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Abstract: For academics and policymakers invested in regional economic development, two 
pertinent questions are how innovative city-regions rise and whether it is inevitable that 
innovative city-regions will fall. Using data from 8 million patents granted to U.S.-based 
inventors between 1850 and 1999, this study describes a general process that city-regions 
undergo as innovation begins, expands, declines, and (sometimes) resurges in regions. The 
results of the study show that inventors experiment with a small number of promising, diverse, 
and non-local ideas in the years before innovation in their home regions begins to grow, that 
inventors build on early locally-introduced ideas as innovation in their home regions expands, 
and that inventors experiment with relatively homogeneous sets of ideas shortly before 
innovation in their home regions declines. The results also show that declining U.S. city-
regions rarely experience second waves of local innovative growth. However, when they do 
experience second waves, those waves are anticipated by changes in the knowledge sourcing 
strategies of local inventors. In particular, the years leading up to second cycles of regional 
innovative growth, local inventors experiment with promising, diverse, and non-local ideas. 
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1) Introduction 
 
Prosperous city-regions derive their fortunes from the innovative activities that agglomerate in 
their vicinities. Agglomeration increases local productivity and attracts inflows of skilled labor 
and knowledge, which gives the prosperity found in regions with strong agglomerations a sense 
of permanence, as though they have always been and always will be centers for innovation. 
Yet innovative city-regions rise and fall. The San Jose–Sunnyvale–Santa Clara Metropolitan 
Area, for example, is the economic core of California’s Silicon Valley and is a remarkable case 
of innovative growth. The region’s inventors produced less than 1% of the United States’ 
patents in 1950 but over 8% in 2000. The Detroit Metropolitan Area, on the other hand, 
exemplifies innovative collapse. Metropolitan Detroit’s inventors produced 4.5% of U.S. 
patents in 1940 but only 2.5% in 2000. 
 
Although the economies of Silicon Valley and Metropolitan Detroit are currently heading in 
opposite directions, the two regions may be undergoing the same general process of economic 
development. As an economic geography literature argues, innovative growth in regions may 
advance through a three-stage process called the regional lifecycle. In the regional lifecycle 
model, innovation first begins in regions, then expands, and eventually declines (Audretsch 
and Fritsch, 2002; Falk and Heblich, 2008; Audretsch et al., 2008). From the perspective of the 
classical regional lifecycle model, meaningful differences in the economic conditions of 
regions are mostly results of the different stages those regions are at in their growth cycles. For 
example, innovation in Silicon Valley may collapse, as it did in Detroit. In a critique of the 
classical lifecycle model, Martin and Sunley (2011) argue that regional development is not a 
deterministic process, but one shaped by interdependencies that occur within regions, within 
the industries in which regions specialize, and at the region-industry nexus. Martin and Sunley 
(2011) propose an alternative “adaptive cycle model” in which regional innovative growth can 
unfold in a variety of directions as local industries experience renewal, are replaced by new 
innovative local industries, or decline without replacement by new innovative local industries.  
 
The main purpose of this paper is to test the validity of the classical and adaptive regional 
lifecycle models. To carry out this test, I examine the dynamics of invention in regions and the 
inventors that reside in those regions. At the regional level, I study the average growth 
trajectory of the inventive output of regions and the extent to which regions deviate from the 
average growth trajectory. In addition, I subset the regions that significantly deviate from the 
average trajectory and carefully study the dynamics of these cases. At the inventor level, I 
investigate the micro-level behavior of the inventors in that reside in inventive regions. I carry 
out this inventor-level analysis because the classical and adaptive regional lifecycle models 
argue that the initiation, expansion, and decline of innovation in regions result from micro-
level behavioral changes on the part of inventors (Porter, 1996; Audretsch et al., 2008; Martin 
and Sunley, 2011).  
 
The paper has a second related purpose: to generate and test an explanation for how regional 
lifecycles begin. Currently, neither the classical nor the adaptive lifecycle model provides a 
satisfactory explanation for the beginning of regional lifecycles. To be sure, it is difficult to 
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explain how inventors initiate knowledge production in new places. Inventors create new ideas 
by recombining existing ones (Nelson and Winter, 1982; Romer, 1990), and inventors are 
better able to source ideas from other actors when they are located in close physical proximity 
or in distant but well-connected regions with established inventive milieus (Jaffe et al., 1993; 
Bathelt et al., 2004; Kwon et al., 2020). In this paper, I attempt to resolve the puzzle of how 
invention can commence in places that lack local knowledge stocks by drawing on a theoretical 
literature on the window of locational opportunity  (Scott and Storper, 1987; Storper and 
Walker, 1991; Brezis and Krugman, 1997; Boschma and Lambooy 1999; Crespo, 2011). The 
theory of the window of locational opportunity states that invention may commence in new 
locations following the introduction of a disruptive invention. In the empirical section of this 
paper, I present empirical evidence that is consistent with the window of locational opportunity 
theory. 
 
I carry out the empirical study using a long-run panel dataset of innovative outputs geocoded 
to U.S. metropolitan areas that stretches from 1836 to 2014. This panel dataset allows me to 
identify commonalities in the growth trajectories of individual regions. Unlike cross-sectional 
data, the panel records allow me rule out deviations from general patterns that are driven by 
local idiosyncrasies (c.f. Audretsch, et al. 2008). I created the main dataset by combining two 
more basic sets of patent data. The first is the set of all utility patents granted by the U.S. Patent 
and Trademark Office between 1836 and 2014, geocoded to metropolitan areas using HistPat 
(Petralia, et al. 2016).1 I use this first dataset to explore the extent to which the innovative 
output of regions follows and deviates from the pattern predicted by the classical regional 
lifecycle model. The second dataset contains records of the flows of technological knowledge 
between individual patents. This dataset covers all USPTO utility patent granted between 1836 
and 2014, a coverage range which greatly exceeds that of traditional records of knowledge 
flows (patent citations) that are only available for patents granted after 1947 (Akcigit, et al. 
2017). I created the second dataset for the purpose of this study, and I use it to investigate how 
the knowledge sourcing behaviors of inventors evolve as knowledge production begins, 
expands, and declines in inventors’ home regions. 
In the following section of this paper, I describe how geographical qualities of the process of 
knowledge production produce cyclical patterns of regional innovative growth and how those 
same qualities create windows of locational opportunity for inventors to initiate knowledge 
production in new places. From there, I describe the construction and dimensions of the dataset 
used in the empirical analysis. In the empirical analysis, I document the general pattern of 
innovative growth in regions and the deviations from the general pattern, I analyze the micro-
level mechanisms beneath regional-level growth cycles, and I investigate the dynamics of 
regions that experience a resurgence of local innovative growth. In the final section, I reflect 
on the empirical results and relate the findings to the literatures on regional lifecycles and 
regional diversification.  
 
 

 
1 Public download links: https://patentsview.org/download/data-download-tables and 
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BPC15W 
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2) Invention and the Life Cycle of Regions 
 
Regional innovative development is a process that contains recognizable stages involving the 
initiation of local innovation, the expansion of local innovation, and (potentially) its eventual 
decline. Each of those stages result from the nature of the process of invention as inventors 
navigate the technological opportunities and constraints that they encounter.  
 
Invention entails the recombination of existing technological ideas into new configurations 
(Romer, 1990; Weitzman, 1998). These new configurations are exceedingly difficult to 
generate because each element in a technology operates by interacting with other elements in 
the same system through complex interfaces (Arrow, 1962; Adler and Clark, 1991; Von Hippel 
and Tyre, 1995; Fleming and Sorenson, 2001; Broekel, 2019). In response to that complexity, 
inventors tend to rely on prior knowledge to ease the process of creating new inventions 
(Fleming, 2001). However, inventors’ ability to rely on prior knowledge is limited by the extent 
of knowledge that they know. Because inventors tend to have narrow areas of expertise, they 
often source ideas from other inventors and scientists (Wuchty et al. 2007).  
 
The high level of detail to technological knowledge also constrains the ability for inventors to 
learn from others. Detailed knowledge overwhelms the bandwidth of the communication 
technologies inventors use to source and share it. Face-to-face communication stands out as an 
exception because face-to-face communication supports knowledge transmission along 
multiple channels including verbal language, body language, and the manipulation of vocal 
tone (Storper and Venables, 2004). Additionally, face-to-face communication allows for 
interactive feedback (Nohria and Eccles, 1992) and facilitates the production of norms and 
routines (Kogut and Zander, 1992; Powell et al., 1996; Gertler, 2003). Because close spatial 
proximity is a necessary condition for face-to-face communication, the ability for inventors to 
develop collaborative relationships, integrate into scientific and technological communities, 
and source technological knowledge increases with geographical proximity (Jaffe, et al. 1993). 
These advantages of face-to-face interaction allow knowledge production to expand in places 
where it has already commenced, but these same advantages make it very difficult for inventors 
to commence knowledge production in places that lack histories of local knowledge 
production, where few ideas can be sourced face-to-face.  
 
One way that inventors may circumvent the challenges of starting knowledge production in 
new places is by exploiting discontinuities in the process of knowledge creation. The 
renderings of knowledge growth advanced by Kuhn (1956), Nelson and Winter (1982), and 
Arthur (2007) all emphasize how ideas exist within larger knowledge domains. Knowledge 
domains contain the sets of ideas that share material or institutional properties. By virtue of 
those shared properties, ideas found within the same domain are more adept for recombination 
than ideas found across domains. Most inventions advance the state of knowledge along well-
defined trajectories of knowledge generation through the recombination of ideas that have 
strong recombinant complementarities (Frenken, et al. 2007; Hidalgo, et al. 2018). However, 
inventors periodically create new knowledge domains. Because the ideas created in new 
domains do not share strong recombinant complementarities with the ideas found in existing 
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domains, the location where new domains will ultimately produce innovative growth is initially 
indeterminate (Scott, 2020, pp. 46). Therefore, the advent of a new knowledge domain opens 
a window of opportunity for inventors to commence knowledge production in new places 
(Scott and Storper, 1987; Walker and Storper, 1991; Brezis and Krugman, 1997; Boschma and 
Lambooy, 1999; Crespo, 2011).  
 
While the introduction of new knowledge domains are often taken as exogenous or random 
events (Arthur, 1989; Brezis and Krugman, 1997), other researchers have argued that new 
domains are created out of existing ones, usually by recombining ideas found across existing 
domains in radically creative and original ways (Kuhn, 1956; Jacobs, 1969; Castaldi, et al. 
2015). Ideas that were not thought to be complements become complements as a new domain 
emerges (Garud and Karnoe, 2001; Shi and Evans, 2020). Statistically, the diversity of the 
knowledge sources used by inventors is high during the creation of new knowledge domains, 
in part because heterogeneous knowledge inputs are truly useful for the creation of novelty 
(Glaeser, et al. 1992; Duranton and Puga, 2001; Berkes and Gaetani, 2020), but also because 
language and coding schemes are not updated after new domains form.  
 
After a new domain forms, the usefulness the combinations of the ideas found within the 
domain becomes apparent to other inventors and economic actors. New entrants of inventors 
and firms, often working in relatively dispersed locations across geographical space (Scott and 
Storper, 1987), begin to experiment with the highly fertile ideas found in the new domain, 
producing more ideas within it (Dosi, 1982; Klepper, 1996). The nascent knowledge domain 
begins to grow, slowly at first, but later exponentially, so long as the ideas within it face 
sufficient demand (Dosi, 1982). Inventors rely on face-to-face communication to source and 
recombine knowledge within the domain and thus start to accumulate knowledge in some 
geographical regions but not in others. Eventually, knowledge production in the domain begins 
to concentrate in space, potentially in locations that were not major producers of technological 
knowledge before the advent of the new domain (Scott and Storper, 1987).  
 
These mechanisms for the initiation of invention in new places have yet to be integrated into 
the regional lifecycle literature. For example, Audretsch, et al. (2008) begin their description 
of the classical regional lifecycle later in the lifecycle process, after a stock of knowledge has 
already accumulated in a new region and spills over between the local firms: they describe the 
first phase of the regional lifecycle as a “first entrepreneurial phase, during which both 
incumbent [firms] and entrepreneurs benefit from inter-industry [knowledge] spillovers” 
(Audrestch et al., 2008 pp. 7). Belussi and Sedita (2009) also emphasize that prior local 
knowledge, in the form of ancient craft traditions, initiates regional lifecycles. Their argument 
begs the question of how the ideas used in ancient crafts originated. Martin and Sunley (2011) 
are similarly vague on the initiation of regional growth cycles; they describe how regional 
lifecycles begin through local “resource accumulation” (pp. 1306), but they do not specify how 
those resources are accumulated.  
 
In contrast to the question of how regional lifecycles begin, both the classical and adaptive 
regional lifecycle models provide clear answers for how and why innovation grows and 
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declines in regions where it has commenced. According to the classical regional lifecycle 
model, as time passes knowledge production in a once-novel domain falters, often when a 
dominant design is introduced that performs a core function with sufficient efficiency 
(Utterback and Abernathy, 1975; Klepper, 1996). Subsequent innovation in the domain 
becomes incremental, draws from a narrow body of knowledge, and has minimal impact on 
subsequent invention (Dosi, 1982; Klepper, 1996). As innovation in a domain declines, so too 
does innovation in the regions that specialized in the domain (Audretsch et al., 2008). 
 
The adaptive cycle model rejects the deterministic decline of innovation in regions. Instead, it 
contends that innovation in regions may resurge because of interdependencies that occur within 
regions, within industries, or in the particularities of regional-industry pairings (Martin and 
Sunley, 2011). The empirical literature on regional innovative growth suggests significant 
heterogeneity across regions in their growth trajectories. Empirical evidence affirms this point: 
some regions achieve a greater quantity innovative growth, and innovative growth in some 
regions persists for longer periods of time, often because of the infusion of non-local ideas that 
re-spark novelty in a region (Nefke, et al. 2017). These differences are present even when 
regions specialized in the same industries are compared (Saxenian, 1996; Menzel and Fornhal, 
2010; Crespo, 2011; Storper, et al. 2015). Additionally, the economies of some regions are 
more resilient than others (Balland et al. 2015), and some regional economies have experienced 
multiple cycles of innovative growth through a localized industrial branching process (Glaeser, 
2003; Belussi and Sedita, 2009; Boschma and Capone, 2015; Neffke, et al. 2017).  
 
In Table 1, I summarize a reconstructed regional lifecycle model. The model depicted in Table 
1 includes the theory of the window of locational opportunity to describe how regional 
lifecycles may begin. As noted in Table 1, the classical and adaptive lifecycle models disagree 
on the dynamics of regions during the fourth stage of the lifecycle. 
 
< Table 1 about here > 
 
3) Data and Methods 
 
3.1) Identifying Inventive Regions and Their Lifecycles 
 
Of the nearly 1,000 metropolitan and micropolitan areas (CBSAs) in the United States, only a 
small number have emerged as innovative centers. The 20 CBSAs that emerged as innovative 
centers during the period for which I have reliable data that is not subject to severe truncation, 
1850-1999, are the main observation units of this study. I define a city-region as an inventive 
center if its local inventors produce 1% or more of the U.S. total flow of patents in a given time 
period. While I use a 1% patenting threshold definition for inventive centers in all analyses in 
the main text, in Online Appendix 4 I show that the main results of the paper are robust to 
altering the 1% threshold value.  
 
In Table 2, I provide descriptive statistics on the 20 CBSAs that crossed the 1% threshold 
during the 1850-1999 study period. These statistics include the half-decade that each of the 20 
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CBSAs crossed the 1% threshold, the number of patents their inventors produced in the half-
decade that each CBSA crossed the threshold, the leading CBSA from which the inventors in 
each CBSA sourced their knowledge during the half-decade their home CBSA crossed the 1% 
threshold, the half-decade when local knowledge production peaked in each CBSA, and the 
technological specialization of each CBSA during the half-decade when local patent production 
peaked (defined as the modal primary USPC patent class in which their local inventors 
produced patents). Some innovative U.S. city-regions, including the New York and Boston 
Metropolitan Areas, are not shown in Table 2 because their local inventors produced more than 
1% of all U.S. patents before 1850. Because these cities’ early histories are significantly 
truncated in the data, I do not these cities the main analysis.  
 
These descriptive indicators in Table 2 generate several insights. First, city-regions have 
emerged as innovative centers across a long historical period, with some cities breaking the 1% 
threshold during the first few years of the 1850-1999 study period and others breaking the 
threshold during the final years of the study period. Second, New York City’s knowledge base 
has been the most important for the emergence of new innovative centers; 18 of the 20 CBSAs 
listed in Table 2 sourced more knowledge from New York City than from any other 
metropolitan area during their formative years. Third, from the specialization in the “sewing” 
technological class in Bridgeport, CT, to the specialization in “railway rolling stock” in St. 
Louis, MO, to the specialization in “multiplex communications” in San Jose, CA, new 
innovative centers have emerged by developing specializations across a diverse array of 
technological fields. 
 
<Table 2 about here> 
 
To study the lifecycles these 20 inventive regions, it is necessary to juxtapose their histories of 
inventive growth. To do so, I calculate the 𝐶𝐵𝑆𝐴	𝐴𝑔𝑒!,# of each city-region c in each time 
period t. This variable measures the number of years before or after a city-region’s local 
inventors first produce 1% or more of the U.S. flow of all patents in the same time period. For 
example, using the information in Table 1, San Jose, CA had a 𝐶𝐵𝑆𝐴	𝐴𝑔𝑒 value of 0 in 1965, 
while Detroit had a 𝐶𝐵𝑆𝐴	𝐴𝑔𝑒 value of 0 in 1865. Formally, 𝐶𝐵𝑆𝐴	𝐴𝑔𝑒!,# is calculated by 
subtracting the half-decade an observation is taken from the half-decade the CBSA first crosses 
the 1% patenting threshold, as in Equation 1: 
 
(1) 𝐶𝐵𝑆𝐴	𝐴𝑔𝑒!,# = 𝑌𝑒𝑎𝑟!,# − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑌𝑒𝑎𝑟!  
 
𝐶𝐵𝑆𝐴	𝐴𝑔𝑒!,# is negative for the decades leading up to the 5-year period a CBSA crosses the 
1% patenting threshold and is positive thereafter. After aligning the time series of patent 
production in each CBSA based on 𝐶𝐵𝑆𝐴	𝐴𝑔𝑒!,#, I compute the average innovative output of 
CBSAs at each 𝐶𝐵𝑆𝐴	𝐴𝑔𝑒!,# value by taking the mean percent of U.S. patents in each half-
decade by 𝐶𝐵𝑆𝐴	𝐴𝑔𝑒!,#. I plot the resulting values in Figure 1 using a Loess regression with a 
100% search distance. Loess regression is a smoothing function that computes rolling means 
across a sample; in the case of Figure 1, the Loess regression shows the average percentage of 
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patents produced in CBSAs at each value of CBSA Age. I use the same Loess regression to 
overlay 95% confidence intervals in the chart.2  
 
<Figure 1 about here> 
 
Figure 1 generates two observations. The first is that there is a general pattern of knowledge 
production growth in inventive city-regions. Local patent production, as a percentage of the 
U.S. total, is minimal during the earliest years in their inventive growth, such as when CBSA 
Age is less than -50. However, patent production expands at a fast rate when CBSA Age is 
between -50 and 50. Patent production continues to increase when CBSA Age is between 50 
and 100, albeit at a slower pace. Patent production reaches its maximum value when CBSA 
Age is 100. As CBSA Age increases from 100 to 150, the mean patent production across 
CBSAs as a percent of the U.S. total declines slightly, though this decline is not statistically 
significant. 
 
The second observation generated by Figure 1 is that invention in most city-regions follows 
the general pattern described above with some deviation. This is demonstrated by the 95% 
confidence interval bands plotted in Figure 1, which are narrow when knowledge production 
begins and expands in CBSAs. The confidence intervals widen somewhat as CBSA Age passes 
100. This increase in the size of the confidence intervals has two possible causes. First, a 
smaller number of city-regions reach a CBSA Age of 100 during the course of the study period, 
which increases the size of the standard errors. Second, city-regions might experience a more 
diverse range of outcomes during their later years.  
 
To summarize, Figure 1 presents strong evidence that knowledge production commences and 
expands in U.S. city-regions following a well-defined pattern. However, Figure 1 does not 
generate a strong conclusion as to whether innovative city-regions regularly enter sustained 
periods of innovative decline in their later years of development. To push this analysis further, 
the final empirical section of the paper (Section 6) focusses on the prevalence and potential 
drivers of regional innovative resurgence. Before that analysis, however, I analye how changes 
the knowledge-sourcing behaviors of inventors over the course of regional lifecycles. 
 
3.2) Overview of Construction of Knowledge Sourcing Data 
 
The cyclical patterns of regional innovative growth documented in the previous section may 
arise from characteristics inherent to the process of knowledge creation. Because inventors 
create new knowledge by building on existing ideas, any tendency for regional innovative 
growth to be cyclical is likely to be associated with changes in the ways that inventors source 
knowledge. 

 
2 Loess regression is a local weighted regression method that estimates a moving average fit line. The 100% search 
distance I use in the Loess model means that observation points factor into the estimate for patent production at 
each CBSA Age value; however, Loess weights nearby points more strongly in its estimation, so not all points 
factor in equally. 
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 To study how inventors’ knowledge-sourcing behavior changes over regional growth cycles, 
it is necessary to analyze harmonized, long-run records of the knowledge sources that inventors 
use to make new inventions. Such data have not been generally available because the common 
data source used to study how inventors source technological knowledge, patent citation 
records, carry two major limitations. First, because many patent citations are added by patent 
examiners and attorneys, the extent to which patent citations represent knowledge spillovers is 
debated (Arora et al., 2019). Second, because the United States Patent and Trademark Office 
(USPTO) did not require patents to cite prior art before 1947, patent citation records are 
unreliable before this year (Akcigit, et al. 2017). 
 
There are, however, implicit historical records of knowledge flow between patents hidden in 
the subclassification codes that the USPTO assigns to patents. The USPTO classifies all utility 
patents using a highly detailed classification scheme. At the highest level of granularity, the 
USPC classification scheme contains over 160,000 unique subclass codes which describe the 
individual components contained in each patented invention (Fleming and Sorenson, 2001). 
Therefore, subclassification codes listed on a patent indicate the recombinant know-how 
embedded in a technology (Fleming, 2001; Arthur, 2009). This argument is illustrated by the 
patent granted to Thomas Edison for the incandescent light bulb (USPTO patent number 
223898). Edison’s bright idea was that a vacuum chamber slows the combustion of a carbon 
filament. These elements Edison used to build his bulb – a vacuum chamber and a carbon 
filament – appear on his patent with the subclassification codes 201/035000 and 313/333000. 
The USPTO defines these codes as “carbonizing under pneumatic pressure or vacuum” and 
“filament or wire shield or electrode”. 
 
Because the subclassification codes listed on a patent indicate the recombinant knowledge 
embedded in the technology, when two timestamped patents share many of the same 
subclassification codes, it is plausible that the more recent patent sourced knowledge from the 
one that was granted before it (Foster and Evans 2019). The method I develop to predict flows 
of recombinant knowledge between inventions works by identifying shared subclassification 
codes between temporally-sorted patents.3 I elaborate on this method in Online Appendix 1, 
and I provide a validation exercise of the produced data in Online Appendix 2. Using the 
methods described in these online appendices, I produce directed a-cyclical graph of the 
knowledge flows that connect 8.7 million USPTO patents granted between 1836 and 2014. In 
the graph, edges point from “parent” patents to their “children” patents.  
 
 
 
 

 
3 Conceptually, the method developed in this study is an inversion of the knowledge persistence method developed 
by Martinelli and Nomaler (2014). Martinelli and Nomaler’s knowledge persistence approach uses observed 
knowledge flows (in the form of patent citations) to infer the knowledge embedded in patents. The method I 
develop uses observed records of knowledge embedded in patents to infer flows of knowledge between them. 
Although these methods are closely related, they make use of different data inputs and serve different purposes. 
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3.2) Measurements of Inventor Behavior 
 
The literature discussed in Section 2 emphasized that inventors may change their propensity to 
source knowledge that is local, diverse, and high-impact along the regional growth cycle 
because each of those types of knowledge sources has unique advantages for initiating and 
expanding knowledge production in regions. To analyze how the knowledge sources used by 
inventors change over the regional growth cycle, I leverage the graph of knowledge flows 
described in the previous section. The dataset records each prior patent from which each focal 
patent draws knowledge. By linking these data to historical records of the residential location 
of each inventor (Petralia, et al., 2015), the USPC classification codes assigned to each patent, 
and a novel measure of the impact of each patent on subsequent invention (as described later 
in this section), I am able to identify the location, knowledge diversity, and impact of the 
knowledge sourced by inventors.  
 
To measure the propensity for inventors in each CBSA and in each half-decade to source local 
knowledge, I compute the percentage of all knowledge sources used by inventors in a 
CBSA*Half-Decade unit that are local. To do so, I first identify all patents granted to inventors 
that resided in a focal CBSA in a focal half-decade. Next, I use my graph of knowledge flows 
to identify the parent patents of the focal CBSA*Half-Decade unit. Finally, I compute the 
percentage of all parent patents that were invented in the same CBSA as the focal patent. 
Occasionally, parent patents are invented by co-inventors that reside in multiple CBSAs, in 
which case I define a parent patent as a local knowledge source if one or more of its co-
inventors resided in the CBSA of the focal patent.  
 
To measure the diversity of knowledge sources used by inventors in cities, I again use the graph 
of knowledge flows to identify the parent patents of the focal patents invented in each 
CBSA*Half-Decade unit. Next, I compute a diversity indicator of the parent patents by 
recording the aggregate primary classification codes (at the 438 unique code level) of the parent 
patents and computing the GINI coefficient across these USPC codes. The GINI coefficient of 
knowledge sources is a measure of inequality in the knowledge sources across technology 
classes. Theoretically, it can range from 0 to 1, with higher values indicating greater inequality 
and thus narrower technological search.  
To measure the propensity for inventors to source knowledge from high-impact inventions, I 
first develop a novel indicator of patent impact. Traditional impact indictors such as the number 
of forward citations received by patents are not available for patents granted before 1947 and 
therefore are unsuitable for my historical analysis (Akcigit, et al. 2017). Therefore, I leverage 
my graph of knowledge flows to compute the number of patents that draw knowledge from 
each patent. This produces a raw (continuous) measure the impact of each patent on subsequent 
invention. Next, I normalize the raw values by half-decade time periods by creating a binary 
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variable, High-Impact, which equals 1 for patents that are in the top-decile of the same half-
decade in terms of their raw impact.4 I define all other patents as low-impact patents. 
 
After computing the binary impact indicator of each patent, I use the graph of knowledge flows 
to identify the parent patents of the patents invented in each CBSA*Half-Decade observation 
unit, and I calculate the percentage of those parent patents that are high-impact and low-impact. 
During this calculation, I also record whether the parent patents are local or non-local, because 
the dynamics of the regional lifecycle suggest that inventors may vary the extent to which they 
source high-impact knowledge from local and non-local environments over the course of the 
lifecycle. Therefore, I distinguish between four types of knowledge sources: sources that are 
non-local and high-impact (NL.High), non-local and low-impact (NL.Low), local and high-
impact (L.High), and local and low-impact (L.Low). 
 
3.4) Comparison Method 
 
In Online Appendix 5, I present plots of the raw indicators of knowledge source types used by 
inventors by City Age. These raw indicators are informative, but they lack necessary controls 
for calendar-year shocks. To account for calendar-year shocks, in the main text I compare the 
types of knowledge sources used by inventors located in the 20 CBSAs that emerge as 
innovative centers during the study period (CBSAs that they break the 1% patenting threshold) 
with the knowledge sources used by inventors located in the 952 CBSAs that never break the 
1% threshold.5 To perform this comparison, I compute the frequency by which their inventors 
use each type of source at each CBSA age value. Unsuccessful cities do not have CBSA age 
values because they never break the patenting threshold. Therefore, I link unsuccessful cities 
to successful cities based on the calendar half-decade of observation. 
 
To demonstrate the comparison method, assume that I seek to compare the knowledge sourcing 
strategies of inventors in San Jose when its CBSA Age was -15 with the knowledge sourcing 
behavior of inventors in all unsuccessful cities at that same moment in history. San Jose was 
age -15 in 1950, so I compute the difference between the reliance of San Jose’s inventors on 
each knowledge type of knowledge in 1950 (local knowledge, diverse knowledge, and high-
impact knowledge) and the reliance on each knowledge type of inventors in all unsuccessful 
cities on the three types of knowledge in 1950 using subtraction. I use patent-weighted means 
across all unsuccessful cities in the same time period when computing the knowledge source 
types used by inventors in unsuccessful CBSAs. Therefore, the knowledge sourcing behaviors 
of inventors in CBSAs with very limited patent production do not unduly influence the results. 
 
 

 
4 The top decile is a commonly-used decile to define high-impact inventions and I adopt it to keep with the 
convention in the literature (Uzzi, et al. 2013); however, the results in Figure 5 are robust to the use of a top-
15% high-impact threshold  
5 Online Appendix 6 summarizes the number of patents produced in the CBSAs that break the 1% threshold and 
inventors in CBSAs that do not break the threshold. 
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 5) Changes in Inventor Behavior over the Regional Lifecycle 
 
5.1) Inventors’ Propensity to Source Local Knowledge 
 
In this section, I investigate how the propensity for inventors to source local knowledge 
changes as knowledge production initiates, expands, and declines in regions. There are two 
core mechanisms that may influence the propensity for inventors to source local knowledge. 
The first mechanism is the quantity effect: the number of local ideas that inventors may draw 
on changes over time as local knowledge production grows. Therefore, larger local knowledge 
bases may be positively associated with the propensity to source local knowledge. The second 
mechanism is the quality effect. Holding the size of local knowledge bases constant, inventors 
may prefer local to non-local ideas if the types of ideas available locally are more useful for 
creating inventions. I decompose the quantity and quality effects using a dartboard as 
developed by Ellison and Glaeser (1997) by randomly shuffling the patents produced across 
CBSAs. I do not change the grant years of patents during this random assignment, so each 
CBSA is assigned the same number of patents as its inventors produced during each year.  
 
After randomizing patent production across CBSA, I compute inventors’ reliance on local 
knowledge sources for each value of CBSA age. As described in Section 3.4, I calculate the 
difference between inventors’ reliance on local knowledge sources in cities that break the 1% 
threshold and inventors’ reliance on local knowledge sources in cities that do not break the 1% 
threshold. In Figure 2, I fit and plot a Loess regression with a 100% search distance to the 
randomized data using a dotted line. The distance between this dotted line and the horizontal 
axis shows the quantity effect on inventors’ propensity to source knowledge locally.  
 
In Figure 2, I add a solid line which is plot a Loess regression of inventors’ reliance on local 
knowledge sources, measured using the observed geographical distribution of patent 
production. The distance between the solid line and the dotted line shows the quality effect on 
the propensity for inventors to source knowledge locally. The distance between the solid line 
and the horizontal axis shows the combination of the two effects. 
 
< Figure 2 about here> 
 
Figure 2 generate several insights. First, when CBSA Age is very low (<-50), the quantity 
effect is 0 (the dotted line is on the horizontal axis), which implies that the size of local 
knowledge bases does not have a positive effect on the propensity for inventors to source 
knowledge locally. This first result is expected because city-regions with very small local 
knowledge bases do not have a sufficient number of local ideas to spur invention. The second 
observation from Figure 2 is that when CBSA Age is very low (<50), the quality effect is 
negative (the solid line is significantly below the dotted line). This result shows that inventors 
in emerging regions strategically seek out non-local ideas. The third observation from Figure 
2 is that as CBSA Age increases above 50, the quantity effect becomes positive (the dotted line 
is significantly above the horizontal axis). This shows that inventors in regions with expanding 
local knowledge production source local knowledge more intensively as the local knowledge 
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pool grows. The fourth and final observation from Figure 2 is that as CBSA Age increases 
above 50, the quality effect is positive (the solid line is significantly above the dotted line). 
This fourth observation shows that regions with expanding knowledge production develop a 
technological niche that is well-suited to spur subsequent local innovation. Moreover, inventors 
in emerging innovative places benefit not just from the quantity of ideas that are locally 
accessible, but also from the quality of those ideas in terms of furthering local knowledge 
production.  
 
5.2) Inventors’ Propensity to Source Diverse Knowledge 
 
In this section, I test whether inventors change the diversity of the knowledge sources that they 
use as local innovation initiates, grows, and plateaus in their home regions. Figure 3 plots a 
Loess regression fit line using a 100% search distance with 95% confidence intervals of the 
difference in the GINI coefficient of knowledge sources used by inventors in cities that break 
the 1% patenting threshold and inventors in city-regions that do not break the threshold. The 
figure generates three important results. First, inventors in city-regions that eventually break 
the 1% patenting threshold source a more diverse set of ideas in the years before their CBSAs 
break the 1% threshold than do inventors in city-regions that never break the 1% threshold: 
when CBSA Age is very low (less than -50), the difference between the GINI coefficients is 
negative. The second finding is that inventors in city-regions that break the 1% threshold source 
an increasingly narrow set of ideas as CBSA Age increases. The third result is that knowledge 
sourcing in city-regions tends to closely follow this general pattern: the 95% confidence 
intervals in the right panel are very narrow, suggesting that the knowledge sourcing strategies 
of inventors rarely deviates from this dominant pattern. These results again are consistent with 
the view that inventors initiate knowledge production in new places by creating new knowledge 
domains out of an initially diverse set of knowledge-based inputs. 
 
<Figure 3 about here> 
 
5.3) Inventors’ Propensity to source High-Impact Knowledge 
 
In this section, I examine how inventors source knowledge with varying levels of impact as 
knowledge production commences, expands, and declines in their home regions. In the 
analysis, I also decompose the types of knowledge sources based on their geography (local or 
non-local) in order to test if the geography of high and low-impact knowledge sourcing also 
evolves across the regional growth cycle. 
 
In Figure 4, I plot Loess fit lines with a 100% search distance of the percentage of knowledge 
sources that used by inventors that are non-local and high-impact (NL.High), non-local and 
low-impact (NL.Low), local and high-impact (L.High), and local and low-impact (L.Low). As 
in the previous charts, the plotted values are the differences between the reliance on each of 
these four types of sources used by inventors in cities that break the 1% patenting threshold 
and their reliance in cities that do not break the 1% patenting threshold.  
<Figure 4 about here> 
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Figure 4 shows that inventors in successful CBSAs rely more heavily on high-impact 
knowledge sources throughout all stages of the regional growth cycle than do inventors in 
unsuccessful CBSAs. However, the geographical origins of these high-impact knowledge 
sources evolve as local knowledge production takes hold. Early in their CBSA’s innovative 
growth, when CBSA age is between -100 and -50, inventors in successful cities source about 
2.5% more of their knowledge from NL.High patents than do inventors in unsuccessful cities, 
as indicated by the dotted grey line above the x-axis. The shaded confidence interval indicates 
that this difference is statistically significant at the 95% level. Between age -50 and 0, inventors 
in successful cities increase a growing share of their knowledge from local high-impact 
inventions, as indicated by dotted black line that rises well-above the x-axis. Eventually, when 
city age passes 50 years, inventors in successful cities source a growing share of their 
knowledge from local low-impact inventions. However, the dotted black line remains far above 
the solid black line for the duration of the chart, indicating that inventors in successful cities 
rely much more heavily on local high-impact knowledge than do inventors in unsuccessful 
cities for the full duration of their region’s innovative growth and decline.  
 
6) The Renewal of Regional Lifecycles 
 
A proposition of the adaptive cycle model of regional innovative development is that regions 
may experience a resurgence of innovation if local industries are renewed or replaced. There 
are four U.S. city-regions that sustained innovation across multiple growth cycles, defined as 
CBSAs that broke the 1% patenting threshold, experienced a decline in patent output over 
multiple decades, and thereafter experienced a second increase in patent output. In this section, 
I describe the dynamics of patent production and knowledge sourcing in these four city-regions 
in order to better understand how their resurgence of innovation occurred. These four city-
regions are the New York, Boston, San Francisco, and Seattle Metropolitan Areas. I did not 
include the New York City and Boston Metropolitan Areas in the prior analyses because their 
inventors produced more than 1% of U.S. patents before the coverage of my data begin in 1850, 
which makes the calculation of CBSA Age as defined in Section 3.1 impossible.  
 
Figure 5 plots the number of patents produced, as a percentage of the U.S. total, by inventors 
in the New York City (NYC), Boston, San Francisco, and Seattle Metropolitan Areas over 
time. For each of these CBSAs, I define a year during which knowledge production reached a 
turning point, defined as the final year before which knowledge production in each CBSA 
started its final ascent. Those turnaround years are 2005 in NYC, 1955 in Boston, 1980 in San 
Francisco, and 1960 in Seattle. I mark each of these turnaround points with a star in Figure 5.  
 
<Figure 5 about here> 
 
I use the turnaround points of the four city-regions as benchmark events to study how the 
knowledge sourcing strategies of their inventors changed in the years leading up to the 
turnarounds. Specifically, I explore changes in the propensity for inventors to source 
knowledge that is local, diverse, and high-impact in the time leading up to the turnaround point 
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of each CBSA by the number of years before or after the city-region undergoes a turnaround 
of its innovative output. As in Section 3.4, I account for system-wide changes in the knowledge 
sourcing strategies of inventors across time by comparing the types of knowledge sources used 
by inventors in these four city-regions with the types of knowledge sources used by inventors 
in city-regions that never cross the 1% patenting threshold. 
 
I begin by analyzing whether the turnaround of innovation in city-regions is associated with 
the sourcing of non-local knowledge. As in Section 5.1, I decompose the quantity and quality 
effects on the propensity to source local knowledge. I plot the resulting propensities using 
Loess regressions with 95% confidence intervals in Figure 6. 
 
<Figure 6 about here> 
 
Figure 6 shows that inventors in city-regions that experience a resurgence of local innovation 
tend to source a relatively greater share of their knowledge non-locally in the years leading up 
to the turnaround. Part of this shift to non-local knowledge sources is driven by the quantity 
effect as the size of local knowledge bases decline. However, the larger share of this shift is 
driven by the decrease of the quality effect, which becomes statistically insignificant in the 
years leading up to the turnaround. The erosion of the quality effect indicates that the types of 
ideas that inventors can source locally in declining regions has no effect on their propensity to 
source local ideas. Moreover, residual knowledge left over in regions from previous growth 
cycles is not uniquely useful for spurring a second cycle of local innovation. 
 
I next study how the propensity for inventors to source diverse knowledge changes as their 
city-regions begin to experience a renewal of local innovation. Figure 7 plots the technological 
narrowness of the knowledge sources used by inventors (the GINI coefficient) for the four city-
regions that experience a turnaround in the years leading up to and following their turnaround 
point. Again, I compute the difference between the Gini coefficient for inventors in the four 
city-regions and the GINI coefficient for inventors in the city-regions that never break the 1% 
patenting threshold. Figure 7 shows that the inventors in the four city-regions that experienced 
a turnaround increasingly source diverse sets of ideas in the years leading up to the turnaround 
point.  
 
<Figure 7 about here> 
 
Finally, I examine how the propensity for inventors to source high-impact knowledge changes 
as city-regions approach a turnaround of local innovation. Figure 8 shows how the propensity 
for inventors in city-regions that experience a renewal of local innovation to source non-local 
high-impact (NL.High), non-local low-impact (NL.Low), local high-impact (L.High), and 
local low-impact (L.Low) knowledge, relative to those propensities for inventors in city-
regions that do not cross the 1% patenting threshold, changes as the turnaround of local 
innovation nears. 
 
<Figure 8 about here> 
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Figure 8 shows that the impact and location of the knowledge sources used by inventors in 
regions that experience a renewal of local innovation changes as the turnaround point nears. In 
particular, inventors in regions that experience a turnaround rely less heavily on local high-
impact sources as the turnaround point approaches and instead source a larger percentage of 
their knowledge from non-local sources.  
 
7) Discussion and Conclusions 
 
This paper has used data on knowledge production and knowledge sourcing to study how 
innovation initiates, expands, declines, and resurges in regions. Regional knowledge 
production growth was found to generally conform to the patterns predicted by the classical 
regional lifecycle model. In particular, the share of technologies produced in each region tends 
to expand in regions in which it has already taken hold, eventually plateaus or declines, and in 
a few exceptional cases, may resume growth after long-term decline. An important caveat to 
these results is that city-regions that recently emerged as centers for innovation have not yet 
reached the age at which we would anticipate their decline. Therefore, it is possible that newer 
U.S. city-regions may break from these historical patterns. 
 
The infrequency by which regions experience a second round of local innovative growth brings 
to question the analytical utility of the adaptive cycle model of regional innovation for the 
evolution of metropolitan areas in the U.S. (Martin and Sunley, 2011). There are several 
possible reasons for why the adaptive cycle may generally not apply to U.S. regions. First, the 
United States’ economy is land-abundant which influences the behavior of its system of cities. 
In this regard, for most of its industrial history the U.S. economy had a frontier that was open 
to the western advance of new industries (Storper and Walker, 1991). This contrasts with 
Europe, where high levels of population density forced new rounds of economic growth to 
establish themselves in the same places where past growth occurred. The second possible 
reason is that the U.S. economy is strongly oriented toward disruptive innovation. Venture 
capital and supporting factors formed in the United States long before they did in other 
economies, such as the European Union or Japan. For this reason, the cognitive and spatial 
distances between existing old and new knowledge domains may be on average greater in the 
U.S. than in other economies. A final possible reason is the U.S. federal government’s laissez-
faire approach to regional economic development (Boschma and Capone, 2015). The federal 
government of the U.S. rarely engages in regional development. State governments, local 
governments, and industry associations are often left to coordinate regional development 
(Storper, et al. 2015). However, state and local governments are unable to distribute capital 
without the generation of tax revenue, and industry associations have minimal incentive to 
invest and organize in declining regions that have residual congestion, high tax rates, and 
organized labor forces (Scott and Storper, 1987; Brezis and Krugman, 1997; Storper and 
Walker, 1991).  
 
Despite these conditions, four city-regions in the United States experienced significant 
resurgences of innovation between 1850 and 2010. These city-regions are the New York City, 
Boston, San Francisco, and Seattle Metropolitan Areas. In addition, this study found that 
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inventors in resurgent city-regions change their knowledge-sourcing behaviors in the years 
leading up to moment of resurgence. In this regard, local inventors source an increasingly 
diverse and non-local stock of knowledge about 10 to 50 years before their home regions 
experienced a resurgence of local innovative growth. In addition, the decomposition of the 
quantity and quality effects on the propensity for inventors to source local knowledge in 
resurging city-regions also found that the quality of local knowledge has no bearing on the 
propensity for inventors in resurging city-regions to source local knowledge. Therefore, cities 
that resurge as innovative centers do so by virtue of the size of the local knowledge stock and 
not the type of ideas found in those places.  
 
Together, the results of this study demonstrate that the process of innovative growth in U.S. 
regions as a cyclical one. Inventors initiate knowledge production in new regions by developing 
and advancing new domains of technological knowledge, and inventors initiate the resurgence 
of knowledge production in declining regions by again developing and advancing new domains 
of technological knowledge. Thus, the initiation and the resurgence of knowledge production 
are both iterations of a general process. In addition, these cycles of regional innovation – even 
when they occur in the same region – are generally distinct episodes, connected to other cycles 
by weak linkages of knowledge.  
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Table 1: Reconstruction of the Regional Lifecycle with Associated Inventor Behavior 

Lifecycle Stage 
Local 

Knowledge 
Production 

Inventor Knowledge-Sourcing Behavior 

Reliance on 
Local 

Knowledge 

Reliance on 
Diverse 

Knowledge 

Reliance on 
High-Impact 
Knowledge 

1. Initiation Small but 
growing Low High High 

2. Expansion Expanding 
rapidly Moderate Moderate Moderate 

3. Decline Plateauing or 
declining No prediction Low Low 

4. Resurgence 
(Only in 

Adaptive Cycle 
Model) 

Growing Decreasing Increasing Increasing 
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Table 2: List of CBSAs (Metropolitan and Micropolitan Areas) that Emerged as 
Innovative Centers during the 1850-2000 Study Period 

CBSA 

Half-
Decade 
CBSA 

broke 1% 
Patenting 
Threshold 

Number of 
Patents 

Produced in 
CBSA during 
Half-Decade 
CBSA broke 

1% Threshold 

Leading 
CBSA of 

Knowledge 
Sources 

during Half-
Decade CBSA 

broke 1% 
Threshold 

Half-Decade 
Patent 

Production 
Peaked in 

CBSA as % 
of U.S. Total 

Top USPC 
Technology 

Class in Half-
Decade Patent 

Production 
Peaked in 

CBSA 

Akron, OH 1940 1,603 NYC 1945 Synthetic Resins 
or Rubbers 

Atlanta, GA 1995 8,489 NYC Has yet to 
peak 

Multiplex 
Communications 

Austin, TX 1990 5,010 San Jose, CA Has yet to 
peak 

Multiple 
Computer or 

Process 
Coordinating 

Bridgeport, 
CT 1930 2,047 NYC 1940 Sewing 

Chicago, IL 1855 169 NYC 1940 
Mineral Oils: 
Process and 

Products 

Dallas, TX 1970 2,656 NYC Has yet to 
peak 

Multiplex 
Communications 

Detroit, MI 1865 494 NYC 1940 
Machine 

Element or 
Mechanism 

Houston, TX 1955 2,021 NYC 1985 Wells (Oil) 

Indianapolis, 
IN 1880 756 NYC 1880 

Belt Power 
Transmission 

Systems 
Los 
Angeles, CA 1905 1,792 NYC 1970 Fluid Handling 

Miami, FL 1980 2,791 NYC 1990 
Electrical 

Communications 
Milwaukee, 
WI 1890 942 NYC 1930 Circuit Makers 

and Breakers 
Minneapolis, 
MN 1890 1,178 NYC Has yet to 

peak 
Surgery: Light, 
Thermal, and 
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Electrical 
Application 

Phoenix, AZ 1985 3,805 NYC 1995 Solid-State 
Devices 

Portland, 
OR 1995 7,621 San Jose, CA Has yet to 

peak 
Semiconductor 
Manufacturing 

San Diego, 
CA 1980 2,813 NYC Has yet to 

peak 
Multiplex 

Communications 
San Jose, 
CA 1965 3,635 NYC Has yet to 

peak 
Multiplex 

Communications 

Seattle, WA 1915 1,645 NYC Has yet to 
peak 

Database and 
File 

Management 
St. Louis, 
MO 1855 170 NYC 1905 Railway Rolling 

Stock 
San 
Francisco, 
CA 

1865 532 NYC Has yet to 
peak 

Database and 
File 

Management 
Data source: Author’s elaboration of USPTO utility patent records. In CBSAs where patent 
production as percentage of U.S. total has yet to peak, the top technology class is given using 
the half-decade ending in 2000. 
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List of Figures 
 
 

Figure 1: Average Patent Production in U.S. CBSAs by CBSA Age 

 
Note: Fit lines estimated with Loess regressions with 100% search distance. Only CBSAs that produce at least 
1% of U.S. patents during one or more 5-year periods of their history are included in the analysis (see Table 2) 
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Figure 2: Difference in Reliance on Local Knowledge Sources for inventors in CBSAs 
that break 1% Patenting Threshold and Inventors in CBSAs that do not break 1% 

Threshold, with Decomposition for Quantity and Quality Effects 

  
Note: Dotted line is produced by randomizing the CBSAs in which patents are produced 

within each year. Patents are assigned the same number of patents as they produced in the 
same year. Solid line is computed taking the observed (real) distribution of patent production 

across CBSAs. 
 
 
 
 
 
 
 
 
 
 



  

28 
 

Figure 3: Difference in GINI Coefficient of Narrowness of Knowledge Sources for 
inventors in CBSAs that break 1% Patenting Threshold and Inventors in CBSAs that 

do not break 1% Threshold 

 
Note: Higher y-values indicate a larger GINI coefficient (relative to the GINI in CBSAs that 

do not cross the 1% threshold) and thus more narrow/specialized technological search 
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Figure 4: Difference in Impact and Geography of Knowledge Sources for inventors in 
CBSAs that break 1% Patenting Threshold and Inventors in CBSAs that do not break 

1% Threshold 

 
 
 
 
 
 
 
 
 



  

30 
 

Figure 5: Patent Production in Cities that Undergo a Renewal of Local Innovation 

 
Note: stars indicate the final year where patent production in each CBSA begins a monotonic 

increase over time that continues through the end of the dataset. 
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Figure 6: Difference in Narrowness of Knowledge Sources for inventors in CBSAs that 
Experience a Renewal of Local Innovation and Inventors in CBSAs that do not break 

1% Patenting Threshold 

 
Note: Higher y-values indicate a larger GINI coefficient (relative to the GINI in CBSAs that 

do not cross the 1% threshold) and thus more narrow/specialized technological search 
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Figure 7: Difference in Percentage of Knowledge Sources that are Local for inventors in 
CBSAs that Experience a Renewal of Local Innovation and Inventors in CBSAs that do 

not break 1% Patenting Threshold 
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Figure 8: Difference in Impact and Geography of Knowledge Sources for inventors in 
CBSAs that Experience a Renewal of Local Innovation and Inventors in CBSAs that do 

not break 1% Patenting Threshold 
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Online Appendix 1) Specifics of Data Construction 
 
I infer flows of recombinant knowledge between patents by exploiting the information 
provided by USPC subclassification codes on all USPTO utility patents granted between 1836 
and 2014. The resulting “tree of technology” is a directed a-cyclical graph that links each patent 
to its knowledge-based antecedents. To create the tree, I begin with raw public files of granted 
patents and USPC subclass assignments available on PatentsView. The USPTO reclassifies 
patents using the USPC coding schema as new subclasses are added over time, creating a 
harmonized, current system. I omit design patents but keep patents assigned to non-U.S. 
inventors, which leaves me with 8.7 million patents.  
 
The USPTO assigns each patent to one or more USPC subclasses. Most patents are assigned 
between 2 and 6 subclassification codes; however, a very small number of patents are assigned 
more than 100 codes. To make the dataset less cumbersome, I discard excess subclassification 
codes on patents by selecting only the first 8 codes from each patent. By selecting the first 8 
codes on each patent, I retain each patent’s leading subclass. 
The tree-building algorithm begins by selecting the most recently granted patent and recording 
its components based on its USPC subclassification codes. I define recombinant knowledge as 
knowledge of components and the interactions of those components, so for each patent I 
generate all combinations of degree n of its components, where n is the number of components 
in a patent.6 For example, if a focal patent (FP) contains the USPC subclassification codes A, 
B, C, the knowledge vector is generated as follows: 
 
(1) 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒$% = [	𝐴	|	𝐵	|	𝐶	|	𝐴𝐵	|	𝐵𝐶	|	𝐴𝐶	|	𝐴𝐵𝐶	]  
 
Each element in 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒$% denotes a single unit of knowledge; the length of 
𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒$% indicates the total quantity of knowledge units embedded in the focal patent. 
The knowledge units in 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒$% are used to link the FP to its knowledge-based 
predecessors, or “parent patents”, based on the number of knowledge units that are found in 
both the focal patent and a possible parent patent. To identify the possible parents of a focal 
patent, I search for overlapping knowledge units in all patents that were granted before the 
focal patent was granted, based on the sequence of patent ID numbers which are numbered in 
order based on patents’ grant date. I do not constrain the time window during which a parent 
patent can serve as a source of knowledge for a child patent because inventors often build on 
both old and new ideas (Mukherjee et al., 2017).7 For each possible parent that fits the simple 
temporal criterion, I generate a shared knowledge vector (SKnowledge) to record the 
knowledge units that appear in both the focal patent and in the parent. For example, if a possible 
parents’ knowledge vector, 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒%%, is given by: 

 
6 The knowledge in a technology is embedded in the individual components in that technology and the way those 
components are interconnected. For example, Edison’s light bulb was created through Edison’s knowledge of the 
existence of viable filament and the vacuum-tight vessel as independent components, and through his 
understanding that these components work synergistically when assembled together. 
7 While I do not constrain the time window, over 90% of child patents draw knowledge from parents that are less 
than 20 years old. 
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(2) 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒%% = [	𝐵	|	𝐶	|	𝐷	|	𝐵𝐶	|	𝐶𝐷	|	𝐵𝐷	|	𝐵𝐶𝐷	]  
 
and the knowledge of the FP, 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒$%, is given by Equation 1, the shared knowledge 
vector is taken as the intersection of the 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒$% vector and the 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒%% vector:  
 
(3) 𝑆𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒$%,%% = [	𝐵	|𝐶	|	𝐵𝐶	]  
 
The length of the above 𝑆𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒$%,%% vector indicates that the focal patent 𝐹𝑃 sourced 3 
units of knowledge from the potential parent.  
 
When an FP has multiple potential parents for an individual unit of knowledge, I assign a 
fractional weight to the edge based on the number of possible parents for that knowledge unit. 
For example, if two possible parents contain the component [ B ], I assume that the FP sources 
0.5 units of knowledge from the [ B ] in the first possible parent and 0.5 units from the second. 
In practice, “simple” knowledge units of length 1 such as [ B ] tend to be found on many 
potential parent patents, while “complex” or lengthier knowledge units such as [ BC ] tend to 
be found on far fewer.8 Therefore, the fractional assignment of edge weights, by virtue of its 
basic methodology, tends to create stronger ties between patents that share complex and thus 
non-ubiquitous combinations of knowledge. It is also important to note that two patents that 
share complex combinations of knowledge can be connected by stronger edge weights because 
complex combinations of knowledge also contain nested simpler combinations. For example, 
when two patents share the combination [BC], they also must share [B] and [C], which means 
that they share 3 total units of knowledge.  Thus, the edge weight connecting the two patents 
could be as large as 3, depending on the fractional assignment. 
 
I repeat the process described above for all 8.7 million USPTO patents granted between 1836 
and 2014. This algorithm produces a directed a-cyclical graph where edges point from parent 
patents to their children patents.  
 
Online Appendix 2) Validation of the Patent Impact Measures 
 
This paper introduces a new dataset which records the flows of knowledge between individual 
patents granted between 1836 and 2010. In this online appendix, I validate the precision of 
these records of knowledge flow by testing whether my method generally agrees with external 
accounts of high-impact inventions. 
 
I thus perform two validation checks to test whether the impact measures calculated using the 
out-degree of the technology tree corresponds to external sources. In the first validation check, 

 
8 At the most disaggregated level of subclasses, there are about 160,000 unique codes. While it improbable that 
any two randomly chosen patents will share a single subclass code, the probability that two randomly chosen 
patents will share two or more subclasses is exponentially smaller. Moreover, the granularity of the 
classification scheme and its combinations allows for very specific matches between child and parent patents. 
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I test whether patents identified by technological historians as uniquely consequential 
inventions have a higher median out-degree than a comparison set of patents. I compare the 
median out-degree of these distributions instead of the means because of the extensive right-
dispersion of the impact across patents. 
 
I use two sets of historian-identified patents for this purpose. The first is provided by Rogers 
(2011), which lists over 100 important inventions made in the U.S. between 1840 and 1920.9 
The second is provided by the Computer History Museum in San Jose, California, which lists 
the patents issued for inventions that were milestones in the development of the silicon engine 
of modern computers.10 For each set of historian-identified patents, I create three control groups 
of patents. The first control group consists of all patents that were granted in same year as the 
historians’ patents. The second control group consists of all patents that were granted in the 
same year and assigned to the same primary class (at which level there are 438 unique classes) 
as the historians’ patents. The third control group consists of all patents that were granted in 
the same year and assigned to the same primary subclass (at which level there are 160,000 
unique subclasses) as the historians’ patents. The median out-degree of the historian-identified 
patents and their reference group are given in Table OA1. In addition, I test whether the 
differences between the median out-degree of the historian-identified patents and the control 
group patents are statistically significant using a Fligner-Policello test. The results indicate that 
the out-degree of patents included in the historian-identified sets of important patents are 
significantly greater than all the control sets of patents. 
 

Table OA1: Mean Out-Degree of Historian-Identified Great Patents 

 Median Out-Degree in Genealogy 

 
Patents in 
Historian 

List 

Same-
Year 

Control 
Group 

Same Year 
and Class 
Control 
Group 

Same Year 
and 

Subclass 
Control 
Group 

Great American Patents 
1840-1920 
Rogers (2011) 

1 0*** 0*** 0*** 

Milestones in the Silicon Engine 
1904-1983  
Computer History Museum 

10 0*** 1*** 3*** 

*** Denotes p-value of difference with the median historian list is less than 0.01 (calculated 
using a Fligner-Policello test) 

 
9 While Rogers (2011) lists impactful inventions back to 1750, his pre-1840 inventions cannot be linked to patents. 
Citation: Rogers, D. (2011). Inventions and their Inventors, 1750-1920. M-Y Books Limited. London. 
 
10 Source: https://www.computerhistory.org/siliconengine/timeline/ 
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In a second validation exercise, I compare the mean out-degree of patents from the technology 
tree to the number of forward citations they receive from subsequent inventions. Because patent 
forward citations are generally broadly available before 1975, I perform this validation exercise 
using only patents granted starting in 1976. In addition, both patents’ forward citation count 
and out-degree from the technology tree suffer right-truncation in recent years. Therefore, I do 
not include patents granted after 1990 in this exercise.  
 
To test the association between patents’ forward citations and out-degree, I run a regression 
model of the forward citations received by patent p as a function of the out-degree of patent p. 
To compare similar types of technologies, I include a primary class of class fixed effect in the 
model. In addition, I include yearly fixed effects. The model is given by the equation below 
and its results are presented in Table OA2. 
 

𝐹𝑤𝑑𝐶𝑖𝑡𝑒𝑠& = 𝐵'𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒& + 𝐹𝐸()*++(,-. + 𝐹𝐸/.*0 
 
Because the dependent variable, 𝐹𝑤𝑑𝐶𝑖𝑡𝑒𝑠&, is a count variable with strong right-dispersion, I 
estimate the equation using a Quasi-Likelihood Poisson model. The estimates are given in 
Table OA2. 
 
Table OA2: Regression of 5-Year Forward Citations and 5-Year Out-Degree Impact of 

Patents, 1976-1990 
 (1) (2) (3) 

B1 0.107*** 
(0.00280) 

0.109*** 
(0.00349) 

0.0905*** 
(0.00295) 

Fixed Effects Year Year and Primary 
Class 

Year and Primary 
Subclass 

Number of Fixed 
Effects 15 389 16,917 

NOBS 1,049,288 1,026,327 301,352 

*** Denotes statistical significance at the 99% confidence interval 
 
Table OA2 shows that for patents granted between 1976 and 1990, out-degree is positively 
associated with forward citation counts. Therefore, out-degree calculated using the technology 
tree is positively associated with three external records of patent impact: forward citations, 
inclusion in Rogers’ (2011) list of great American patents, and inclusion in the Computer 
History Museum’s list of milestone patents in the development of the silicon engine. 
 
Next, I explore changes in the average impact of patents and the average number of subclasses 
assigned to patents over time. I plot these values in Figure OA1. In the figure, I also break out 
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the average of high-impact patents (those in the top-10% of impact in the same grant-year 
cohort). 
 
Figure OA1 shows that both the average impact of patents and the average number of 
subclasses on patents increased during the study period. These two trends may be related, 
because patents assigned more subclasses have a greater number of embedded knowledge units 
and thus can have more knowledge-based descendants. In the empirical analyses in the main 
text, I remove the temporal aspect of this relationship from the data by defining high-impact 
patents as those in the top-10% of impact in their same grant-year cohort. This normalization 
makes patents granted later in time (i.e. in the 1990s) no more likely to be high-impact than 
earlier-granted patents simply by virtue of the increase in the number of subclass codes on 
patents over time.  
 

Figure OA1: Average Impact and Number of Classes of Patents by Year

 
 
In the following analysis, I analyze the aggregate technological sectors in which high-impact 
patents were produced between 1850 and 1999. I use aggregated sectors at which there are 6 
sectors in this analysis. The number of high-impact patents by sector are plotted in Figure OA2. 
The figure shows that most high-impact patents were created in the mechanical and 
miscellaneous sectors until 1940, after which the chemicals, computers, and drugs and medical 
sectors became the primary sectors in which high-impact patents were produced. 
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Figure OA2: Count of High-Impact Patents by Technological Sector 

 
Finally, I examine the extent to which shared edges in the genealogical tree predicts citations 
between patents. Because this analysis is performed at the edge level, the full dataset is too 
computationally burdensome to analyze in full. Therefore, I take a random 10% sample of all 
backward citations made by patents granted in 1990 (there are 44,000 citations contained in 
this 10% sample). Next, I test whether the “genealogy-identified parent patents” of these 
sampled “child patents” are a significant predictor of their “citation-identified parent patents. 
 
To perform this test, it is necessary to compare actual citations with citations that could 
plausibly have been made. The approach used by Jaffe, et al. (1993) involves creating two 
datasets: a case dataset and a control dataset. The case dataset contains citations that were 
observed on patents, while the control dataset contains citations that plausibly could have been 
made. I adopt a similar approach in this exercise. I create a case dataset that contains the random 
10% sample of backward citations made by patents granted in 1990. Then, I create three control 
groups. In the first control group, I randomize the patent that receives each citation but keep 
the grant year of the receiving patent constant. Therefore, the first control group is a sample-
year randomized-patent control set. In the second control group, I randomize the patent that 
receives each citation but keep the grant year and the primary aggregate technological class (at 
the 438 unique codes level) constant. Therefore, the citations made in the second control group 
have similar vintage and technological field. In the third control group, I randomize the patent 
that receives each citation but keep the grant year and the subclass (at the 160,000 unique code 
level) constant. In doing so, I omit citations that do not have a respective control patent granted 
in the same year and in the same subclass. Therefore, the third control group contains citations 
of the same vintage and of the same detailed subclass. 
 
I combine the case dataset with one of the first control group and run a regression model in 
which the probability that a citation is a real citation is modeled as a function of whether the 
patent i and patent j are connected by an edge in the genealogical tree. After running this model 
using the case dataset and the first control group, I then combine the case dataset with the 
second control group and re-run the model. Finally, I run the model using the case dataset and 
the third control group. The regression model is given by the below equation: 
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𝑃𝑟𝑜𝑏C𝑅𝑒𝑎𝑙𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛12E = 𝐵'𝐺𝑒𝑛𝑒𝑎𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝐸𝑑𝑔𝑒12 + 𝐸12 
 
I estimate the equation using a linear probability model and show the estimates of 𝐵'for the 
three datasets in Table OA3. 
 

Table OA3: Regression of 𝑷𝒓𝒐𝒃C𝑹𝒆𝒂𝒍𝑪𝒊𝒕𝒂𝒕𝒊𝒐𝒏𝒊𝒋E 

 (1) (2) (3) 

𝐵' 0.506*** 
(0.0153) 

0.494*** 
(0.0152) 

0.285*** 
(0.0136) 

Intercept 0.494*** 
(0.00173) 

0.494*** 
(0.00173) 

0.495*** 
(0.00174) 

Control Parent 
Patents Same vintage Same vintage and 

aggregate class 
Same vintage and 
detailed subclass 

 
The results in Table OA3 show that the connection between two patents with a genealogical 
edge is a significant predictor of whether two patents will be connected by a citation. These 
results are consistent regardless of whether the control group of “fake” cited patents are taken 
from the same vintage (column 1), the same vintage and aggregate class (column 2), or the 
same vintage and detailed subclass (column 3). Notably, the coefficient two patents sharing a 
genealogical edge is smaller when the granularity of the match with the control group increases 
(as in column 3). This result is expected because the control group in column three already is 
technologically very similar to the real citations. Therefore, the genealogical edges will not add 
as much explanatory power to the model. 
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Online Appendix 3) Diversity of Patents in Innovative Centers 
 
The analysis in the main text shows that the knowledge sources used by inventors become 
increasingly specialized as their home regions emerge as innovative centers. In this section, I 
more generally describe the pattern of the increased specialization of knowledge produced by 
inventors in rising innovative places. I plot the Gini coefficient of the knowledge types 
produced by inventors in each rising innovative center in each given 5-year period. The patterns 
are plotted in Figure OA3. I use four separate charts to plot these patterns in order to make it 
easier to interpret the patterns. 
 

Figure OA3: Diversity of Knowledge Produced in Rising Innovative Centers 
 

  

  
 
The patterns shown in Figure OA3 generally conform to those identified in the main text, in 
particular the main text's analysis of the diversity of knowledge sources used by inventors as 
their home regions rise as innovative centers. In particular, the knowledge produced by 
inventors in cities becomes increasingly specialized as their home regions emerge as innovative 
centers. This relationship is shown in examples such as Chicago, which both rose as an 
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innovative center early on (in 1855, as per Table 2), and produced a relatively specialized set 
of knowledge early on (as shown in Figure OA3). By contrast, Austin TX did not produce a 
specialized set of knowledge until later in time, and it did not rise as an innovative center until 
the late 20th century. 
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Online Appendix 4) Analysis using 0.5% and 5% Thresholds to Measure Emergence of 
Innovative City-Regions 
 
In the Online Appendix 4, I replicate the core analyses found in the main text but use 0.5% and 
5% patenting thresholds to define the year that a CBSA emerges as an innovative center, instead 
of the 1% threshold used in the main text. The conclusions of the results are generally the same 
as those in the main text. 
 

Figure OA4: Production of High and Low-Impact Patents in CBSAs by CBSA Age 
using 0.5% and 5% Thresholds 

0.5% Threshold 

 

5% Threshold 

 
 
 

Figure OA5: Geography of Knowledge Sources using 0.5% and 5% Thresholds 
0.5% Threshold 

 

5% Threshold 

 
 
 



  

44 
 

Figure OA6: GINIs of Innovative CBSAs Relative to Non-Innovative CBSAs using 
0.5% and 5% Thresholds 

0.5% Threshold 

 

5% Threshold 

 
 
 

Figure OA7: Impact and Geography of Knowledge Sources using 0.5% and 5% 
Thresholds 

0.5% Threshold 

 

5% Threshold 
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Online Appendix 5) Analysis of Raw Knowledge Sourcing Propensities 
 
In the Online Appendix 5, I show the raw indicators of the types of knowledge sourced by 
inventors in CBSAs that cross the 1% patenting threshold. In contrast, the results in the main 
text show the difference in the types of knowledge sources used by inventors in CBSAs that 
cross the 1% threshold and the sources used by inventors in CBSAs that do not cross the 1% 
threshold. 
 
Figure OA8: Percentage of Knowledge Sources that are Local in CBSAs that break the 

1% Threshold using Raw (Non-Differenced) Values 

 
 

Figure OA9: GINI Coefficient of Knowledge Sources in CBSAs that break the 1% 
Threshold using Raw (Non-Differenced) Values 
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Figure OA10: Impact and Geography of Knowledge Sources in CBSAs that break the 
1% Threshold using Raw (Non-Differenced) Values 
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Online Appendix 6) Patenting in CBSAs that break and do not break the 1% patenting 
threshold 
 
 
Figure OA11: Log Patent Production in CBSAs that break the 1% Patenting Threshold 

and in CBSAs that do not break the 1% Patenting Threshold 

 


