
  

1 
 

The Geography of Breakthrough Invention in the United States over the 20th Century 

 

 

Christopher Esposito 

University of Chicago 

 

 

Abstract 

 

The geography of breakthrough invention in the U.S. – defined as the spatial distribution of the 

production of patents that are both novel and impactful – underwent three broad changes during the 20th 

century. At the start of the century, breakthrough invention was concentrated in populous metropolitan 

areas with high levels of local knowledge variety. By the 1930s, breakthroughs were created less 

frequently across the entire country and so their invention had a less distinct geography. The substantial 

creation of breakthroughs resumed in the 1960s, and while their invention was once again concentrated 

in major metropolitan areas with high knowledge variety, they frequently involved long-distance 

collaboration. In this article, I document these changes and propose a theory to interpret why they 

occurred. The theory emphasizes how changes in inventors’ institutional and communication 

technology environments influence the geographical locations that are advantageous for breakthrough 

invention. In support of the model, I find that the disruptiveness of the regime of technological change, 

the knowledge intensity of breakthroughs, the distance-based frictions incurred by collaboration 

technologies, and the distance-based frictions incurred by knowledge-sourcing technologies help to 

predict the spatial distribution of breakthrough invention. To conclude the article, I discuss lessons that 

the 20th century’s geography of breakthrough innovation provide for anticipating the geography of 

innovation in the 21st century, including in the years beyond COVID-19. 

 

 

 

 

 

 

Acknowledgements: I thank David Rigby, Michael Storper, Allen Scott, Wolf Uhlbach, Anthony 

Frigon, Carolin Ioramashvili, Ryan Hynes, participants at the SEG seminar series, participants at the 

NARSC annual meeting, and the editor and four anonymous reviewers at Research Policy for their 

thoughtful feedback. In addition, I thank Frank van der Wouden for providing pre-1975 inventor 

location data. 



  

2 
 

1) Introduction 

 

Breakthrough inventions are critically important to the economy, to organizations, and to policymakers. 

Breakthroughs are leading drivers of technological change (Anderson and Tushman, 1990) and to the 

competitive advantage of firms (MacGrath, et al, 1996). Recently, governments have started to view 

breakthroughs as instrumental for the achievement of policy goals, including the preservation of 

technological supremacy1 and the accomplishment of societal grand challenges, from the combatting of 

infectious diseases to the mitigation of climate change (Mazzucato, 2021). A careful understanding of 

the types of institutional and geographical environments that are conducive to the creation of 

breakthroughs would help to advance the economic, organizational, and societal ambitions along all 

these fronts. 

 

Economic geographers, urban economists, and innovation scientists have long sought to uncover the 

types of spatial environments that enhance creativity and promote invention. Past research has 

emphasized how agglomeration in regions with diverse stocks of circulating ideas increases the range 

of ideas that inventors can access and their propensity to invent (Jaffe, et al., 1993; Audrestsch and 

Feldman, 1996; Duranton and Puga, 2001; Mewes, 2019; Berkes and Gaetani, 2020; Moretti, 2021). 

Although important, this literature has two limitations. The first is that it faces an analytical puzzle: 

while inventive activity in the U.S. is currently concentrated in the country’s large and dense 

metropolitan areas (Balland et al., 2020; Baum-Snow, et al. 2020), historically invention was prevalent 

in rural parts of the country (Perlman, 2016; Berkes and Nancka, 2021). Highly impactful inventions, 

such as airplane and the cotton gin, were developed in the countryside (Mokyr, 1992), and some 

inventions that are commonly regarded as urban creations, such as the Ford Model T, were developed 

through interactions between urban engineers and rural customer bases (Gordon, 2017). Even Silicon 

Valley, the leading cluster of invention in the United States, had a low population density during its 

formative – and potentially, most inventive – years (O’Mara, 2019). In addition to these historical 

fluctuations, the recent increase in the distance between patent co-inventors, which tripled between 

1900 and 2015 (Van der Wouden, 2020; Clancy 2020), does not fit neatly into a vision of agglomeration 

as the primary driver of invention. The relationship between spatial density and invention is thus more 

complex than is often suggested. 

 

The second limitation to the existing literature is that it focuses on invention in general, and not on 

breakthrough inventions in particular. The unique qualities of breakthrough inventions, as inventions 

that are both novel and highly impactful, suggest that their geography may deviate from the overall 

 
1 In 2022, the National Science Foundation in the U.S. established the Regional Innovation Engines program to 
“respond to the global competition for talent and leadership in science and technology”. Source: 
https://beta.nsf.gov/funding/initiatives/regional-innovation-engines 
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geography of invention in important ways. The high quantity of knowledge needed to invent 

breakthroughs may make their invention more responsive to changes in the strength of long-distance 

communication technologies. In addition, the overall production of breakthroughs changes over time as 

the economy undergoes technological revolutions (Schumpeter, 1934). While overall invention may 

always have a geographical distribution, few breakthroughs are invented during non-revolutionary 

periods, so their production does not always assume a distinctive geography. 

 

With these considerations in mind, this article has two objectives. The first is to systematically describe 

how the geography of breakthrough invention in the United States evolved over the 20th century. In this 

regard, the analysis benefits from two new datasets that make it possible to analyze the geography of 

breakthroughs over a long timeframe. The first dataset provides information on the residential location 

of pre-1975 U.S. patent inventors (van der Wouden, 2020). This dataset improves on existing historical 

inventor location records (Petralia, et al. 2017) by offering more precise information for multi-inventor 

patents. The second dataset are indicators on the impact of historical patents on subsequent invention 

(Esposito, 2022). Before 1947, patents did not make citations to prior art, so citation-based patent impact 

measures cannot be calculated for historical inventions (Akcigit, et al. 2017). The new dataset, 

introduced by Esposito (2022), uses subclasses on patents to trace knowledge flows between inventions 

and thus allows for the identification of breakthroughs invented before 1947. 

 

In describing the changing geography of breakthrough invention, I study ordinal changes in the 

geographical distributions of breakthrough invention, which range from spatial concentration to spatial 

dispersion, as well as more complex geographies that can emerge from non-local collaboration. My 

analysis generates three findings. First, during the early 20th century, inventors residing in regions with 

large and varied stocks of local ideas were more likely than inventors residing in regions with smaller 

and less varied knowledge stocks to develop breakthroughs. Second, in the mid-20th century, inventors 

located in regions with large and varied knowledge stocks were no more likely than inventors in other 

regions to develop breakthroughs. Third, at the end of the 20th century, inventors that resided in regions 

with large and varied knowledge stocks and engaged in non-local collaborations were more likely than 

all other types of inventors to develop breakthroughs. These results demonstrate that the geography of 

breakthrough invention in the U.S. is complex and evolves over time. 

 

The second objective of this paper is to propose an interpretation for why historical changes in the 

geography of breakthrough invention occurred. Toward this effort, I draw from three literatures. Two 

of those literatures, on technological regimes and the burden of knowledge, argue that inventors’ 

knowledge environments influence how they invent and the types of inventions that they produce 

(Winter, 1984; Breschi, 2000; Breschi, Malerba, and Orsenigo, 2000; van Dijk, 2000; Jones, 2009; 

Diodato and Morrison, 2019; Fontana, Martinelli, and Nuvolari, 2021). The third literature, on localized 
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knowledge spillovers, argues that distance-based frictions associated with communicating complex and 

tacit knowledge cause inventive activity to concentrate spatially (Jaffe, et al. 1993; Audretsch and 

Feldman, 1996; Gertler, 2003; Storper and Venables, 2004). I bring together these sources to propose 

that four factors interacted to help produce the spatial distributions of breakthrough invention that 

emerged over the 20th century. These factors are disruptiveness of the regime of technological change, 

the knowledge intensity of breakthrough inventions, the distance-based frictions incurred by the 

technologies that inventors use to collaborate with colleagues, and the distance-based frictions incurred 

by the technologies that inventors use to source ideas from cities where they do not have active 

collaborators. The theory developed here is not intended to isolate causality. For example, some of the 

listed factors, such as the disruptiveness of a regime of technological change, are both causes and 

outcomes of the geography of breakthrough invention. Instead, the theory is intended to serve as an 

analytical tool that, when critically applied, can assist in interpreting the history of breakthrough 

invention in the U.S.  

 

I begin in Section 2 by describing the process of invention and by showing how inventors’ institutional 

and communication technology environments influence how they invent, their propensity to create 

breakthroughs, and the locations where they make breakthroughs. In Section 3, I introduce and explore 

the datasets used in the empirical analysis. In Section 4, I empirically examine how the geography of 

breakthrough invention changed in the U.S. over time. In Section 5, I study how inventors’ institutional 

and communication technology environments changed over time, and I demonstrate how those changes 

are related to the evolution of the geography of breakthrough invention. Finally, in Section 6 I discuss 

how the findings of this analysis revise a common interpretation for why economic activities dispersed 

across space during the mid-20th century, and I share lessons that this historical revision generates for 

forecasting the future of the agglomeration of breakthrough innovation, including in the years after 

COVID-19.  

 

2) Invention, Breakthroughs, and Location 

 

A strong relationship currently prevails between agglomeration and invention, which suggests that the 

two are linked by a causal arrow. However, a detailed and historical perspective indicates that the 

relationship between agglomeration and invention is more complex. During the 18th and 19th centuries, 

inventions were frequently made in the rural regions of the U.S. (Mokyr, 1990; Gordon, 2017; Mewes, 

2019; Balland et al., 2020). Although a big-city advantage for invention emerged at the start of the 20th 

century, it might not have lasted: while patent records suggest that invention remained concentrated in 

large cities in the middle of the 20th century (Bettencourt et al., 2007; Mewes, 2019; Berkes and Gaetani, 

2020; Balland et al., 2021), employment records indicate that employment in the most innovative 

occupations spread out across space (Desmet and Rossi-Hansberg, 2009; Kemeny and Storper, 2020). 
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The contemporary big-city advantage for invention arrived by the end of the 20th century (Baum-Snow 

et al. 2020; Kemeny and Storper, 2020). In addition to these historical fluctuations, the recent increase 

in non-local collaboration also complicates the relationship between agglomeration and invention. The 

average distance between the co-inventors of patents tripled between 1900 and 2019, suggesting that 

permanent geographical co-location is no longer a necessary condition for inventors to create and 

maintain collaborative relationships (Van der Wouden, 2020; Clancy, 2020).  

 

Together, the historical fluctuations in the relationships between agglomeration, non-local 

collaboration, and invention beg a question: why does the geography of invention change over time? 

Presumably, changes in the geography of invention are related to more fundamental changes in the 

process of invention. Inventors create new technologies by combining existing ideas into new forms 

(Schumpeter, 1936; Weitzman, 1997; Fleming and Sorenson, 2001). Past research has suggested that 

the way in which inventors carry out this general process is shaped by two main factors: inventors’ 

competitive environments or technological regimes (Schumpeter, 1934; Schumpeter, 1942; Dosi, 1982; 

Winter, 1984; Breschi, 2000; Breschi, Malerba, and Orsenigo, 2000; van Dijk, 2000; Fontana, 

Martinelli, and Nuvolari, 2021), and inventors’ long-distance communication technologies (Jaffe, et al., 

1993; Leamer and Storper, 2001; Storper and Venables, 2004; Sorenson, Rivkin, and Fleming, 2006). 

These broader conditions influence the market structure of invention (Lamoreaux and Sokoloff, 1996; 

Lamoreaux, Sokoloff, and Sutthisphisal, 2013), the ways in which inventors undertake technological 

search, the types of technologies that inventors produce, and the types of locations where inventions are 

made. 

 

Changes in inventors’ technological regimes, and inventors’ communication technologies also have the 

potential reshape the geography of breakthrough invention. Breakthrough inventions are distinguished 

from other inventions along two key dimensions (Grashof et al., 2019; De Noni and Belussi, 2021). 

First, breakthroughs are novel in that that they deviate from existing knowledge bases in highly 

imaginative ways. Second, breakthroughs are impactful in that they stimulate a large quantity of 

subsequent invention. Because breakthroughs must fit both criteria, they are exceedingly difficult to 

generate. The high impact of breakthroughs implies that inventors need to combine highly synergistic 

ideas to develop breakthroughs (Fleming and Sorenson, 2001). A very small percentage of the potential 

combinations that inventors can create are sufficiently synergistic, so inventors must search extensively 

and develop detailed expertise in order to identify the few that are (Youn, et al. 2016). Likewise, the 

novelty criteria of breakthroughs implies that inventors need to access unconventional ideas to create 

novelty (Mewes, 2019; Berkes and Gaetani, 2021). These combinations are only found at the “adjacent 

possible”, or at the knowledge frontier, which is a relatively small region of complete technological 

search space (Kauffman, 1996). Therefore, novelty is generated more often by inventors that have 

access to larger, more varied, and more complex stocks of knowledge (Feldman and Audretsch, 1999; 
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Nieto and Santamaria, 2007; Mewes, 2019; Balland, et al. 2020; Solheim, Boschma, and Herstad, 

20020; Antonelli, Crespi, and Quatraro, 2000; Bahar, Rapoport, and Turati, 2020; Lo Turco and 

Maggioni, 2020; Berkes and Gaetani, 2021).  

 

Because of these difficulties, inventors benefit strongly from location in supportive institutional and 

geographical environments when creating breakthroughs. The literatures on technological regimes, the 

burden of knowledge, and the localization of knowledge spillovers have developed strong 

understandings of how inventors’ environments affect their inventiveness. The technological regimes 

literature argues that inventors’ technological-institutional environments vary in four important ways 

(Schumpeter, 1934; Schumpeter, 1942; Dosi, 1982; Winter, 1984; Breschi, 2000; Breschi, Malerba, and 

Orsenigo, 2000; van Dijk, 2000). The first is the availability of technological opportunities in a 

technological regime. In some knowledge-based institutional environments, new ideas are more 

plentiful than in others, which increases the overall productivity of inventors. The second factor is the 

ability for firms and organizations to appropriate the returns to invention. When appropriability is high, 

incumbent firms retain the technological leadership of their industries over time. The third factor is the 

nature of the knowledge base in a technological regime. This abstract factor has been interpreted to 

include the tacitness and the industrial specificity of the knowledge in a technological regime (Breschi, 

2000; Breschi, Malerba, and Orsenigo, 2000). The fourth factor is the cumulativeness of technological 

advances in a regime. In cumulative technological regimes, new technologies build directly on prior 

ones in well-defined trajectories. By contrast, in disruptive regimes, technological change advances 

through the introduction of novelty that displaces incumbent technologies.  

 

Of the four potential factors raised by the technological regimes literature, the cumulativeness of a 

technological regime is directly related to inventors’ overall propensity to create breakthrough 

inventions. Because breakthroughs are novel and stimulate a large quantity of technological change, 

they can only be created in technological regimes where technological change advances from novel 

inventions (Fontana, et al., 2012). Historical studies suggest that the cumulativeness or disruptiveness 

of the technological regime in the U.S. changed over time. Schumpeter’s pivot from his early view of 

technological change as a disruptive process (Schumpeter, 1911) to his later view that technological 

change is cumulative (Schumpeter, 1934) was likely induced by a decline in disruptiveness between his 

writings (Breschi, Malerba, and Orsenigo, 2000). The second industrial revolution, which occurred 

during the late 19th and early 20th centuries, was a period of intensive technological experimentation. 

By contrast, the middle of the 20th century was a period of relative stability (Gordon, 2016). This period 

of stability was followed by the ICT revolution during the late 20th century, which led to another period 

of disruptive technological change (Storper and Kemeny, 2020). Therefore, the technological regimes 

literature predicts that inventors were in more advantageous positions to create breakthroughs if they 

worked during the beginning or end of the 20th century. 
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While the cumulativeness of a technological regime is related to the overall propensity for inventors to 

create breakthroughs, three other factors help to determine the geographical regions that are 

advantageous for their invention. The first factor is the knowledge intensity of invention. While all 

inventions build on existing ideas, extensive research has shown that the quantity of knowledge that 

inventors need to create useful inventions increased over the 20th century (Lamoreux and Sokoloff, 

1996; Wuchty, Jones, and Uzzi, 2007; Jones, 2009). The increase in knowledge intensity, often called 

the “burden of knowledge”, caused invention to concentrate in organizational forms that were able to 

access and assemble larger bodies of knowledge, including larger teams (Wuchty, Jones, and Uzzi, 

2007) and denser inventor networks (Powell, Koput, and Smith-Doerr, 1996). As van der Wouden 

(2020) shows, the average number of collaborators on USPTO patents increased from 1.2 to 1.55 

inventors between 1900 and 1975. Such increases in the intensity of collaboration will cause invention 

to concentrate spatially if inventors need to be geographically proximate in order to create and maintain 

collaborative ties (Breschi and Lissoni, 2009; Balland, Boschma, and Frenken, 2015). 

 

The rising knowledge intensity of invention also produced changes in the market structure of invention, 

which further facilitated transformations in the geographical distribution of invention. As Lamoreaux 

and Sokoloff (1996; 2005) show, inventors’ increasing reliance on specialized knowledge at the turn of 

the 20th century caused them to focus on the development of new technologies as opposed to the 

commercialization of their technologies. To profit from their inventions, inventors sold their patents to 

incumbent firms, and these sales were facilitated by networks of agents and lawyers that were 

concentrated in the nation’s largest cities (Lamoreux, Sokoloff, and Sutthisphisal, 2003). Because 

independent inventor-entrepreneurs accounted for half of the patents granted by the USPTO until the 

1930s (Nicholas, 1930), one would expect that invention would be spatially concentrated during the 

first decades of the 20th century, and to have deconcentrated thereafter. 

 

More generally, the increase in then knowledge intensity of invention over time may interact with 

spatial frictions in the spillover of knowledge and cause inventive activity to concentrate in space (Jaffe, 

et al. 1993; Audrestsch and Feldman, 1996a; Audrestsch and Feldman, 1996b; Sorenson, Rivkin, and 

Fleming, 2006; Balland, et al. 2020). The friction that distance exerts on the flow of knowledge is 

shaped by the long-distance communication technologies that inventors have at their disposal to access 

and assemble knowledge (Storper and Leamer, 2003). The efficacy of long-distance communication 

technologies depends on the extent to which they substitute for face-to-face communication. Face-to-

face communication is exceedingly efficient because it allows for the use of body language, the 

manipulation of vocal tone, and the use of physical contexts to enrich messages (Storper and Venables, 

2004; Gertler, 2003). Certainly, early in U.S. history long-distance communication technologies were 

poor substitutes for face-to-face communication. While primitive communication tools such as the mail 

post diffused across the U.S. during the 19th century and increased local patenting rates (Acemoglu, 
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Moscona, and Robinson, 2016), the materials that can be sent via the post (text and diagrams) represent 

a small percentage of the information that can be conveyed through face-to-face interaction and the 

physical demonstrations of technologies. 

 

When long-distance communication technologies do improve, they improve asymmetrically, and 

become more effective for transmitting certain types of information than for others. In this regard, it is 

useful to distinguish between long-distance collaboration technologies and long-distance knowledge-

sourcing technologies. Long-distance collaboration technologies are the devices that inventors use to 

collaborate with non-local colleagues, such as letters, email, videoconferencing, and long-distance 

travel. An improvement in these tools allows inventors to collaborate more often and more effectively 

with non-local colleagues. Long-distance knowledge-sourcing technologies are the tools that inventors 

use to source ideas from regions where they do not have active collaborators. These tools include written 

or digitalized scientific articles and patent documents. For example, Lamoreaux and Sokoloff (1996) 

describe how trade magazines started to “print complete lists of patents issued on a weekly basis, and 

provided readers with copies of patent specifications for a small fee” during the early 20th century (pp. 

12,687). Such publications allowed inventors to build on ideas known by non-local inventors in the 

absence of collaboration, similar to the service now performed by Google Patents. 

 

The four factors of the disruptiveness of the regime of technological change, the knowledge intensity 

of breakthroughs, the effectiveness of long-distance learning technologies, and the effectiveness of 

long-distance collaboration technologies interact to influence the geographical distributions of 

breakthrough invention. In influencing the geography of breakthrough invention, the disruptiveness of 

the regime of technological change is an overriding factor. When the regime is not disruptive (or 

cumulativeness is high), few breakthrough inventions are created across the entire economy. Thus, the 

geography of breakthroughs is undefined. The remaining three factors are highly interactive. When the 

knowledge intensity of breakthroughs is low, changes in the effectiveness of long-distance 

communication technologies have minimal impact the geography of breakthrough invention, because 

inventors do not need to source much knowledge to create breakthroughs. Therefore, regardless of the 

strength of communication technologies, breakthrough invention will disperse across space when their 

knowledge intensity is low. These conditions may describe the 19th century in the U.S., when invention 

was less knowledge-intensive (Jones, 2009; Balland et al. 2020), inventors generally worked as 

individuals rather than in teams (van der Wouden, 2019), and relatively modest attempts to diffuse 

invention spatially, such as rail extensions and the building of public libraries in rural areas, had an 

observable effect on regional patenting rates (Pearlman, 2016; Berkes and Nencka, 2021). By contrast, 

when the knowledge intensity of breakthroughs is high, even a small decrease in the efficacy of long-

distance communication vis-a-vis face-to-face communication will put geographically isolated 

inventors at a serious competitive disadvantage in the creation of breakthroughs. 



  

9 
 

The most interesting geography of breakthroughs occurs when the knowledge intensity of 

breakthroughs is high, and the technologies inventors use to access non-local knowledge improve 

asymmetrically. If long-distance knowledge sourcing technologies are strong but long-distance 

collaboration technologies are weak, innovation disperses across space because inventors can easily 

source non-local ideas. If long-distance knowledge sourcing technologies are weak but long-distance 

collaboration technologies are strong, the geography of breakthroughs becomes multi-nodal, with core 

hubs of inventive activity connected by long-distance collaborative networks. This outcome arises 

because it allows inventors to combine more varied sets of ideas. By concentrating spatially in regions 

with large and varied knowledge stocks, inventors can learn a wide range of ideas. These inventors do 

not lose access to non-local ideas, because they can collaborate with non-local colleagues (Bathelt, et 

al. 2004).  

 

These arguments are synthesized in Table 1. For brevity, I omit from the table changes in the 

disruptiveness of the technological regime. I omit this factor because the spatial distribution of 

breakthroughs is undefined whenever disruptiveness low.  

 

Table 1: Predicted Geography of Breakthroughs in Disruptive Regimes of Technological 

Change 

Long-Distance 

Collaboration 

Technologies 

Long-Distance 

Knowledge Sourcing 

Technologies 

Knowledge-Intensity of 

Breakthroughs 

Low High 

Weak 
Weak Dispersed Concentrated 

Strong Dispersed Dispersed 

Strong 
Weak Dispersed Multi-Nodal 

Strong Dispersed Dispersed 

 

Existing research has explored the geography of invention, novel invention, and high-impact invention, 

but there are no existing large-scale studies across long historical periods in the United States of the 

geography of breakthrough invention. Grashof et al. (2019) studied the creation of novel and impactful 

patents in Germany and found that these patents are disproportionately created by firms that are located 

geographically inside innovative clusters but whose inventors are in the periphery of their clusters’ 
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collaborative networks.2 From these results, the authors conclude that both local and non-local 

interactions between inventors are important for the creation of breakthroughs. De Noni and Belussi 

(2021) studied the creation of novel and impactful patents in regions of the European Union between 

2008 and 2014 and find that they are most frequently invented in regions with multiple but related 

industrial specializations. The authors interpret the benefits of specialization within co-agglomerated 

industries as an outcome of the extensive knowledge heterogeneity that can be found within industries. 

Therefore, while De Noni and Belussi’s (2021) conceptualization of the variety of knowledge in regions 

is somewhat different, their results are consistent with the view that the propensity for inventors to 

create breakthroughs increases when they have access to a variety elemental knowledge units. 

 

Additional studies have separately examined the geographical distribution of the creation of novel 

inventions and impactful inventions, but they have not studied the geographical distribution of novel 

and impactful in conjunction. Balland et al. (2020) show that overall patenting in the United States is 

concentrated in populous metropolitan areas and that this association is stronger for novel patents.3 

Mewes (2019) also studies the spatial concentration of overall patenting and novel patenting in the U.S. 

and finds both types of innovation to be concentrated in metropolitan areas with diverse local knowledge 

stocks. However, neither Balland et al. (2020) nor Mewes (2019) analyze the impact of novel patents 

on subsequent invention. Berkes and Gaetani (2020) perform a similar analysis using U.S. counties as 

their unit of observation. In addition, Berkes and Gaetani (2020) test the overall relationship between 

the novelty of patents and the impact of patents, measured using patent forward citation counts. They 

find that novel patents in the U.S. are disproportionately created in counties with high population 

densities and that novel patents are on average more impactful than non-novel inventions in terms of 

spurring subsequent innovation. However, Berkes and Gaetani (2020) do not analyze whether patents 

that are both novel and impactful are more often created in high-density counties. Finally, Castaldi et 

al. (2015) examine the knowledge-based characteristics of U.S. states that are more likely to produce 

high-impact patents, measured again using patent forward citation counts. They find that inventors in 

states with diverse stocks of circulating unrelated ideas tend to produce high-impact inventions more 

frequently. However, Castaldi et al., (2015) do not analyze the novelty content of these patents. In 

addition, Castaldi et al.’s (2015) study is at the state level, within which population density and local 

knowledge diversity substantially varies. Thus, while each of these five studies of U.S. invention 

suggest that agglomeration economies are important for overall patenting, novel patenting, and high-

 
2 Grafhof et al. (2019) refer to breakthrough inventions as “radical inventions”. They define “radical inventions” 

as patents that are both novel and impactful, which is the definition of breakthroughs adopted by this paper. 
3 Balland et al. (2020) define novel patents as “complex” patents. Their measurement of complexity, which 

measures the newness of the subclassification codes on patents, closely resembles this paper’s definition of 

novelty. 
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impact patenting, they do not analyze the relationship between agglomeration and the production of 

patents that are both novel and impactful. In addition, the two studies that do analyze the geography of 

the production of patents that are both novel and impactful (Grashof, et al., 2019; De Noni and Belussi, 

2021) are focused on European regions. As a result, the geography of breakthrough innovations in the 

U.S. has yet to be systematically described. 

 

In addition to these issues related to the identification of breakthrough inventions, the geography of 

breakthrough innovation is likely to contain important variations across time. Two historical studies 

analyze the geographical concentration of innovation in the U.S. over an extended period (Mewes, 

2019; Balland et al., 2020). Both studies use USPTO patent records to measure innovative output and 

find that the spatial concentration of overall patenting increased between 1850 and 2000. While Balland, 

et al. (2020) find that the increased concentration is even stronger for novel patents (measured by the 

age of the subclassification codes assigned to patents), using a slightly different measure of novelty 

Mewes (2019) finds no difference between the agglomeration of overall patenting and the 

agglomeration of novel patenting. Again, neither study examines changes in the geographical 

concentration of inventions that are novel and impactful.   

 

Finally, there is growing recognition that the geography of innovation is more complex than a binary 

typology of spatial concentration or dispersion or an ordinal gradient spanning the two. In particular, 

non-local collaboration allows inventors to bridge separate inventive milieus, experiment with 

underexplored combinatorial possibilities, and possibly introduce high-impact inventions (Bathelt et al. 

2004; Esposito and Rigby, 2019). While the growing prevalence of non-local collaborations is well-

documented (Fitjar and Rodriguez-Pose, 2013; van der Wouden, 2020; Clancy, 2020), the relationship 

between non-local collaboration and the invention of breakthroughs has not been systematically studied. 

 

3) Methods 

3.1) Methods Overview 

 

I define breakthroughs inventions are the subset of inventions that are both novel and highly impactful 

(Grashof, et al., 2019; De Noni and Belussi, 2021). A simple typology of inventions that vary in terms 

of their novelty and their impact is provided in Table 2. The table highlights how the measurement of 

patent’s novelty and impact are combined to identify breakthrough inventions. 
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Table 2: Typology of Inventions by Novelty and Impact 

 Low impact High impact 

Low 
novelty 

(1) 
Unsuccessful 
conservative 
experiments 

(2) 
Incremental 

advancements 

High 
novelty 

(3) 
Unsuccessful radical 

experiments 

(4) 
Breakthroughs 

 

3.2) Measuring Patent Novelty 

 

Past studies have identified novel inventions based on the extent to which they introduce new ideas or 

recombine existing ideas in new ways. For example, Uzzi et al. (2013) computes the atypicality of the 

knowledge combinations in scientific articles using z-scores, which calculate the extent to which each 

combination of knowledge units in each invention deviates from the combinations inventors have made 

in the past. Kim et al. (2016) and Mewes (2019) apply this method to the subclassification codes listed 

on patents, taking subclass codes as indicators of the knowledge components in each invention. Berkes 

and Gaetani (2020) compute z-scores using the citations made by patents to a similar effect. After 

measuring the atypicality of component combinations at the pairwise level between all ideas combined 

in an invention, the novelty of patents can be computed by aggregating the atypicality of component 

combinations to the level of patents. 

 

I define novel inventions as patents that contain one or more atypical combinations of components. I 

calculate the atypicality of the components in each patented invention by calculating z-scores between 

the pairs of USPC subclasses on each USPTO utility patent granted between 1900 and 1999.4 These 

USPC subclasses describe the components in each invention and thus allow me to identify inventions 

that combine components in unanticipated ways (Fleming, 2001). Before computing z-scores, I follow 

the approach of Kim et al. (2016) and coarse-grain the subclasses that the USPTO assigns to patents to 

the most aggregate level, at which level there are 12,986 unique coarse-grained subclasses that appear 

on patents granted between 1900 and 1999. I coarse-grain subclasses because z-scores require a 

sufficiently extensive pre-history of patenting to accurately measure the mean frequency of the 

combination of any two subclasses. Coarse-graining subclasses thus increases the frequency that each 

subclass is observed.  

 
4 I source raw patent data and their USPC subclasses from the publicly-accessible Patents View website: 

https://www.patentsview.org/ 
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Following Uzzi, et al. (2013), Kim, et al. (2016) and Mewes (2019), I compute the z-score of the 

combination of subclass i with subclass j on a patent using Equation 1: 

 

(1) 𝑍!,# =
$!,#%&!,#
'!,#

 

 

In Equation 1, 𝑜!,#is the number of past co-occurrences of coarse-grained subclasses i and j on all 

previously granted patents. The term 𝑢!,# gives the expected number of past co-occurrences of coarse-

grained subclasses i and j if inventors were to combine subclasses randomly. Its value is computed as 

follows: 

 

(2) 𝑢!,# =
(!∗(#
*

 

 

In Equation 2, 𝑛! and 𝑛! are the respective cumulative number of patents that contain coarse-grained 

subclasses i and j on all prior patents, and N is the cumulative count of all prior patents. Finally, the 

variance of the subclass pairing, 𝜎!,#+ , is given by Equation 3:  

 

(3) 𝜎!,#+ = 𝑢!,# '1 −
(!
*
* '*%(#

*%,
* 

 

𝑍!,# is positive when two coarse-grained subclasses are combined more frequently than expected given 

a random process, and negative when two coarse-grained subclasses are combined less frequently than 

expected given a random process. To generate a straightforward measure of the extent to which a 

combination is atypical, I follow Mewes (2019) and define atypical combinations as those with negative 

Z-scores. To aggregate the atypicality of subclass pairs to the patent level, I define novel patents as 

those that contain one or more atypical combination of subclasses. I define all patents which do not 

introduce an atypical combination of subclasses as “normal” patents.  

 

A significant share (34.9%) of patents granted between 1900 and 1999 are assigned to just one coarse-

grained USPC subclass. Because these single-subclass patents do not contain any subclass 

combinations, their novelty cannot be measured and the patents must be omitted them from the main 

study. In Appendix D, I analyze these single-subclass patents in greater detail to anticipate how their 

omission influences the study’s results. The general takeaway from that analysis is that the omission of 

single-subclass patents may cause the study to understate the concentration of breakthrough invention 

in cities with high knowledge variety and the propensity for breakthroughs to be invented by multi-

locational teams. 
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3.3) Measuring Patent Impact 

 

The second criteria of breakthroughs is that they have outsized impact on subsequent innovation. To 

identify high-impact inventions, researchers often count the number of forward citations received by 

patents (Hall, Jaffe, and Trajtenberg, 2001). Esposito (2022) develops a related approach by tracing the 

flow of knowledge between individual patents based on the co-occurrence of combinations of 

subclassification codes found on different patents. There are two advantages to the latter method. First, 

citation records are not available for patents granted before 1947 (Akcigit, et al. 2017) and are only 

publicly available via the PatentsView database from 1975 onward. In contrast, the subclass codes used 

by Esposito’s (2020) method to trace knowledge flows are available for all USPTO utility patents 

starting in 1836. Therefore, the subclass method allows for longer historical studies. The second 

advantage is that the subclass method uses the same basic data input to identify high-impact inventions 

and to identify novel inventions. Using a common data input for both measures results in a more 

harmonized study. 

 

To compute the impact of individual patents on subsequent invention, I follow the method of Esposito 

(2022) to count the number of subsequent inventions that draw knowledge from each patent. I deviate 

slightly from the method of Esposito (2022) by using course-grained USPC subclassification codes 

instead of raw subclasses. The course-grained subclass codes allow me to use the same classification 

scheme across the entire analysis, as discussed above. Applying the method described by Esposito 

(2022) creates a graph of predicted the flow of knowledge between patents, represented by the 

adjacency matrix 𝑮. After producing 𝑮, I compute the impact of each patent by counting the number of 

patents that draw knowledge from each focal patent. Patent impact is thus calculated by taking the out-

degree (d) of each patent (p), using 𝑑-$&. = ∑ 𝑮!,-! , where i indexes patents. To remove right-truncation 

from the measure of patent impact, I omit edges in 𝑮 that span patents that were granted more than 10 

years apart. Because the adjacency matrix 𝑮 contains patents granted up to 2014, this allows me to 

compute the impact of patents granted through the end of the 20th century without right-truncation.  

 

In keeping with the method of Esposito (2022), I reduce the computational burden of the knowledge-

tracing algorithm by restricting the dataset to patents that have 8 or fewer subclasses. This data 

truncation is necessary because the number of queries needed to identify the knowledge-based 

descendants for each patent increases at a rate of 2( − 1, where n is the number of subclasses on a 

patent. Only 0.6% of all 1900-1999 patents have more than 8 coarse-grained subclasses, so this 

truncation affects few patents.  However, 9+ sublcass patents may represent a disproportionate share of 

the high-impact and novel patents. Therefore, in Appendix D, I examine whether patents with more 

than 8 subclasses are disproportionately produced in cities with high knowledge variety. The insight 
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from that analysis is that the omission of patents with more than 8 subclasses causes me to understate 

the spatial concentration of high-impact invention in high-variety cities and the propensity for them to 

be invented by multi-locational teams. 

 

3.4) Measuring the Variety of Knowledge in Metropolitan Areas 

 

To measure the knowledge variety of metropolitan areas and micropolitan areas (CBSAs), I link each 

patent to the CBSA in which it is invented. To do so, I use place-of-residence data provided van der 

Wouden (2020) for all U.S. inventors between 1900 and 1975, and I use place-of-residence data publicly 

available on the PatentsView website for all U.S. inventors between 1976 and 1999. I use constant-

boundary 2015 CBSA definitions for this purpose. I measure knowledge variety at the CBSA level by 

counting the number of unique USPC coarse-grained subclassification codes assigned to the patents 

produced by inventors that reside in each (CBSA) in each year. This measure captures the absolute 

variety of local knowledge production, meaning that it is the total number of ideas produced in each 

CBSA in a given year. This measure is meant to capture the number of unique ideas that an inventor 

can access using face-to-face communication and without the need for travel.  

 

To simplify the empirical analyses, I transform raw local knowledge variety values into a binary 

variable by defining high-variety CBSAs as those where inventors produced patents in 10% or more of 

the USPC course-grained subclassification codes assigned to all U.S. patents in the same year. All 

CBSAs that do not meet the variety criterion are labeled as low-variety CBSAs. For example, in 1950 

the USPTO assigned patents using 7,454 unique course-grain subclass codes, so in 1950 high-variety 

CBSAs were those that produced patents with at least 745 unique subclasses. In 1950, 11 CBSAs met 

the knowledge variety criterion.5 In Appendix C, I repeat the main analysis using a more lenient 5% 

threshold to define high-variety CBSAs. The results do not change substantially when I use a 5% 

threshold. 

 

3.5) Data Description 

 

I plot key trends using the data in Figure 1. Figure 1A shows the median and top and bottom deciles of 

the number of coarse-grained USPC subclasses assigned to patents by year. Figure 1A uses the full 

sample of all 2,586,656 USPTO utility patents granted to U.S.-based inventors between 1900 and 1999. 

The objective of Figure 1A is to illustrate how the removal of patents with 1 subclass and with 9+ 

subclasses may bias the sample. Both the median and bottom decile are equal to one at the start of the 

 
5 In 1950, the high-variety CBSAs were (in descending order), New York, Chicago, Philadelphia, Pittsburgh, 
Detroit, Los Angeles, Boston, Cleveland, San Francisco, Milwaukee, and Bridgeport CT.  
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century, and the median increases to two subclasses in the 1930s while the bottom decile remains at one 

subclass. Therefore, the dropping of single-subclass patents results in the loss of a larger number of 

patents during the early 20th century and a somewhat smaller loss of patents toward the end of the 

century. The dropping of patents with 9+ subclasses result in relatively few patents lost, particularly 

during the start of the century. 

 

Figure 1B plots the percentage of patents in the subsample that are novel by year. The data subsample 

contains the 1,669,512 patents assigned to U.S.-based inventors between 1900 and 1999 that contain 2-

8 coarse-grained subclasses. In 1900, 29.1% of the patents in the subsample were novel. By 1999, that 

figure declined to 17.8%. This negative trend is similar to the one identified by Kim et al. (1996). It is 

driven by the increased propensity for inventors to make conventional combinations of subclasses, 

given the prior distribution of subclass combinations. It is tempting to interpret the decrease in the novel 

share as evidence of increasingly conservative technological search. However, novel inventions could 

become more important for driving technological change even if they are created less frequently. 

Therefore, the decrease in the novel share does not necessarily imply that technological change has 

become less radical or disruptive over time. 

 

Figure 1C plots the median, top decile, and bottom decile of the patent impact distribution for the 

subsample. While the median and bottom decile of the distribution are equal to 0 throughout the study 

period, the top decile begins at 1 and increases to 4 by the end of the study period. This right-skewed 

distribution is common in patent impact measures and needs to be accounted for when modeling the 

impact of patents. Often, researchers take the natural logarithm of patent impact measures to account 

for skew (Bakker, 2017). However, because of the large number of zero impact patents in the dataset, I 

use the inverse hyperbolic sine (IHS) transformation to adjust for the skew in the patent impact 

distribution in the subsequent analyses. The IHS transformation approximates the natural logarithm but 

is defined for values of zero (see Tubiana, Miguelez, and Moreno 2022 for a recent application).  

 

Figure 1D brings together the measures of patent impact, novelty, and CBSA knowledge variety by 

plotting the percentage of overall patents, high-impact patents, and novel patents that are produced in 

CBSAs with high knowledge variety. Interestingly, the production of novel patents (red line) in high-

variety CBSAs is nearly identical to the concentration of overall patenting (blue line) in high-variety 

CBSAs. This result is similar to the finding of Mewes (2019) and suggests that high local knowledge 

variety does not spur inventors to create novel inventions more frequently. On the other hand, Figure 

1D shows that high impact patents (orange line) are disproportionately produced in CBSAs with high 

local knowledge variety. The difference in the concentration of novel and high-impact patenting in high-

variety CBSAs suggests that there is a complex relationship between local knowledge variety and local 

breakthrough invention. Moreover, these divergent relationships documented in Figure 1D motivate a 
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more detailed examination of whether patents that are novel and impactful are disproportionately 

produced in CBSAs with high local knowledge variety. 

 

Figure 1: Data Trends by Year 
(A) Number of Subclasses on Patents 

 

(B) Percent of Patents that are Novel 

 
(C) Impact of Patents 

 

 

(D) Percent of Patents Produced in High-
Variety CBSAs 

 
Note: Figure 1A uses the full sample of all USPTO utility patents granted to U.S-based inventors. 

Figures 1B-1D restrict the full sample to patents assigned between 2 and 8 subclass codes. 
 

4) Results: The Geography of Breakthrough Innovation 

4.1) Results for Breakthrough Concentration in High-Variety Cities 

 

I examine changes in the relationship between local knowledge variety and the invention of 

breakthroughs by examining if the average impact of novel patents rises with local knowledge variety. 

I focus on the increase in the impact of novel patents in high-variety cities because, as Figure 1D 

showed, there is no relationship between the knowledge variety in a CBSA and the probability that a 

locally-invented patent is novel. By testing the relationship between local knowledge variety and the 

impact of locally-produced novel patents, I am able to examine whether the novel patents that are 

produced in high-variety CBSAs are highly impactful and thus breakthroughs. 
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I begin in Figure 2A, where I plot changes in the average impact of four types of patents over time. 

Those patent types are novel patents invented in high-variety CBSAs (Nov | High-Variety), novel 

patents invented in low-variety CBSAs (Nov | Low-Variety), normal patents invented in high-variety 

CBSAs (Norm | High-Variety), and normal patents invented in low-variety CBSAs (Norm | Low-

Variety). As discussed in Section 3, I apply an inverse hyperbolic sine (IHS) transformation to the raw 

patent impact values to reduce skew in the variable’s distribution. Because patents can be produced by 

multiple co-inventors, the observation unit of the data plotted this chart, and in all subsequent analyses, 

are patent-inventors. For example, a patent invented by two co-inventors appears twice in the dataset. 

There are 9,720,476 patent-inventor observations in the subsample. This large number of observations 

makes it infeasible to create scatterplot, so I plot best-fit lines with 95% confidence intervals. The large 

number of observations also renders infeasible the most common method used to compute rolling 

average fit lines (LOESS regression), so I produce fit lines using a Generalized Additive Model (GAM) 

with a cubic spline smoothing parameter (Wood et al. 2017). I use this same plotting method for all 

subsequent figures. 

 

Figure 2: Average Patent Impact by Novelty and Knowledge Diversity of City of Invention 

 
 

Figure 2 generates three inferences. First, across all years, novel patents invented in CBSAs with high 

knowledge variety (Nov|High-Variety) were the most impactful patent type, followed by novel patents 

invented in CBSAs with low knowledge variety (Nov|Low-Variety) inventions. Second, the average 

impact of all types of inventions increased over time. Third, the increases in average impact were larger 

in high variety CBSAs: the impact of Nov|High-Variety patents increased relative to Nov|Low-Variety, 

and the impact of Normal|High-Variety) increased relative to Norm|Low-Variety.  
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The increase in the average impact of Nov|High-Variety patents relative to Nov|Low-Variety patents 

suggests that the invention of breakthrough patents increasingly concentrated in high-variety CBSAs 

over time. However, Figure 2 should be interpreted cautiously for two reasons. First, the large increases 

in average impact for all types of patents make it difficult to identify differential trends. Second, patents 

vary in terms of the number of subclasses assigned to them. Patents with more subclasses have higher 

impact values by virtue of their larger subclass count. The latter consideration arises because the method 

used to identify knowledge-based descendants of patents searches for overlapping subclasses and 

combinations of subclasses on patents (Esposito 2020). Patents assigned many subclass codes therefore 

have more opportunities for knowledge-based descendants. 

 

To take these two considerations into account, in Figure 3A I adjust the impact of patents based on the 

year a patent is granted and the number of subclasses assigned to it. To adjust the impact of patents, I 

run a linear regression model where patent impact is regressed against a Year*NumberOfSubclasses 

factor variable. Because there are 100 years in the dataset (1900-1999) and 7 counts of subclasses 

assigned to patents (patents can be assigned between 2 and 8 subclasses in my dataset), the factor 

variable has 100*7=700 unique values. I collect the residuals from the regression and plot them against 

the grant year of patents. As discussed before, I apply the inverse hyperbolic sine (HIS) transformation 

to the dependent variable to reduce its skew. The regression model used to generate the 

Year*NumberOfSubclasses adjusted impact values is given by Equation 4: 

 

(4) 𝐼𝐻𝑆2𝐼𝑚𝑝𝑎𝑐𝑡-8 = Γ	𝑌𝑒𝑎𝑟- ∗ 𝑁𝑟𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠- + 𝐸- 

 

In Equation 4, Γ is a vector of coefficeints that captures the mean of 𝐼𝐻𝑆2𝐼𝑚𝑝𝑎𝑐𝑡-8 by 

Year*NrSubclasses. The residual term 𝐸- thus contains patent impact values that have been adjusted 

for the number of subclasses and the grant year of patents. I aggregate these adjusted impact values 

given by 𝐸- by the novelty of the patent and the knowledge variety of the CBSAs in which they are 

invented and plot their values in Figure 3A.  

 

Figure 3A shows that the impact of patents with different levels of novelty and invented in cities with 

different levels of knowledge variety changed over three distinct periods during the 20th century. The 

first period was 1900 to 1930. During this period, novel patents were more impactful than normal 

patents. The non-overlapping 95% confidence intervals around each of these lines indicates that this 

difference was statistically significant. In addition, starting in 1915 novel patents invented in high-

variety CBSAs were significantly more impactful than novel patents invented in low-variety CBSAs. 

The second period was 1930 to 1965, during which the adjusted impact of novel inventions declined 

relative to normal inventions. During the third period, from 1965 to 1999, the adjusted impact of novel 
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inventions made in high-variety CBSAs increased significantly above that of normal patents. In 

addition, the adjusted impact of novel patents invented in low-variety cities did not increase. This latter 

result shows that by the end of the 20th century, breakthrough innovation was concentrated in cities with 

a high local level of knowledge variety. 

 

The patterns in Figure 3A could potentially be driven by differences across industries or cities in the 

propensity to create high-impact patents that are independent of the level of local knowledge variety in 

a city. For example, the USPC subclassification scheme may be more detailed for some industries than 

for others. The impact of patents granted in industries with more detailed scheme could have higher or 

lower impact than patents granted in other industries, strictly because of the density of the classification 

scheme in the focal industry. In addition, cities with economies that specialize in industries with denser 

USPC patent classification schemes may appear to have higher local knowledge variety as an artifact 

of the classification scheme. To account for these potential confounding factors, in Figure 3B I plot 3-

way adjusted patent impact values, where patent impact is adjusted for a patent’s industry, the city it is 

invented in, the number of subclasses on the patent, and the year it is granted. I use the primary USPC 

class assigned to patents as a proxy of a patent’s industry. There are 437 unique USPC primary classes 

in the dataset. To calculate adjusted patent impact, I regress the impact of a patent invented by inventor 

I against three sets of factor variables: 𝑌𝑒𝑎𝑟- ∗ 𝑁𝑟𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠-, 𝑌𝑒𝑎𝑟- ∗ 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑙𝑎𝑠𝑠-, and 𝑌𝑒𝑎𝑟- ∗

𝐶𝐵𝑆𝐴! factor variables. The regression model used to perform this adjustment is described by Equation 

5: 

 

(5) 𝐼𝐻𝑆2𝐼𝑚𝑝𝑎𝑐𝑡-8 = Γ	𝑌𝑒𝑎𝑟- ∗ 𝑁𝑟𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠- + 	Θ	𝑌𝑒𝑎𝑟- ∗ 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑙𝑎𝑠𝑠- +Φ	𝑌𝑒𝑎𝑟- ∗
𝐶𝐵𝑆𝐴! + 𝐸- 

 

In Figure 3B, I extract the residual term from Equation 5 and aggregate it based on the novelty of patents 

and the knowledge variety of the CBSAs where those patents are invented. 



  

21 
 

Figure 3: Predicted Patent Impact by Novelty and Local Knowledge Diversity of CBSA of 

Invention 

(A) Impact Adjusted for 𝑌𝑒𝑎𝑟- ∗
𝑁𝑟𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠- 

 

 

(B) Impact Adjusted for 𝑌𝑒𝑎𝑟- ∗
𝑁𝑟𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠-, 𝑌𝑒𝑎𝑟- ∗ 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑙𝑎𝑠𝑠-, and 

𝑌𝑒𝑎𝑟- ∗ 𝐶𝐵𝑆𝐴! 

 
Note: The regression used to estimate predicated impact is given in Equation 4. 

 

Figure 3B shows that the concentration of high-impact novel patenting in high-variety CBSAs is 

robust to the inclusion of industry and city-specific fixed effect controls. The one notable difference 

between Figure 3A and Figure 3B is that the average impact of novel patents produced in low-variety 

CBSAs is somewhat higher toward the end of the 20th century once industry and CBSA controls are 

included in the model. 

 

4.2) Results for Breakthroughs and Non-Local Collaboration 

 

While Figures 3A and 3B show that breakthrough innovation concentrated in high-variety CBSAs at 

the end of the 20th century, the propensity for teams of inventors to collaborate non-locally also 

increased during the study period (Van der Wouden, 2019; Clancy, 2020). The increase in non-local 

collaboration suggests that the classical model of local innovation resulting from high distance-based 

communication costs became more complex over time (c.f. Duranton and Puga, 2001; Storper and 

Venables, 2004; Berkes and Gaetani, 2020). Therefore, I examine the relationship between the 

engagement of inventors in non-local collaborations and the creation of breakthroughs in Figure 4. To 

do so, I compare the average impact of patents created by inventor-teams located in single CBSAs and 

in multiple CBSAs. In addition, I decompose inventor-teams based on the knowledge variety of their 

home cities by differentiating between multi-locational teams that reside in low-variety and low-variety 

CBSAs. To ease interpretation, I momentarily omit all inventor-teams with teammates that resided in 
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both high-variety and low-variety CBSAs (I analyze these mixed teams in Appendix A). Finally, I omit 

all patents invented by lone inventors. 

 

Figure 4: Average Patent Impact of Collaborative Patents by Type of Collaboration 

 
 

Figure 4 shows that, up until the 1950s, the average impact of novel patents produced by multilocational 

teams was not significantly different from that of novel patents produced by single-locational teams. 

However, after 1950 the impact of novel patents produced by multi-locational teams in high-variety 

CBSAs increased significantly beyond those produced by single-locational teams or teams in low-

variety CBSAs.  

 

The patterns observed in the raw data in Figure 4 could be driven by confounding changes in the 

propensity for the USPC to assign more subclasses to patents over time. Therefore, in Figure 5A I adjust 

the impact of patents based on the number of subclasses on patents and the year each patent was granted. 

To perform this adjustment, I collect the residuals from the regression model described by Equation 4. 

In addition, in Figure 5B I adjust patent impact for the industry (measured using primary USPC classes) 

and the CBSA a patent is produced in, using the regression model described by Equation 5. The latter 

adjustment controls for the average patent impact of each primary technology class in each year, and 

the average impact of patents produced in each CBSA in each year.  

 



  

23 
 

Figure 5: Impact of Collaborative Patents by Type of Collaboration 

(A) Impact adjusted for Year*NRSubclasses 
 

 

(B) Impact adjusted for Year*NRSubclasses, 
Year*PrimaryClass, and Year*CBSA 

 
Note: Regressions to estimate adjusted impact are given in equations 4 and 5. 

 

Figures 5A and 5B both show there were no statistically significant differences in the adjusted impact 

across patent type until 1950, after which the impact of novel patents produced by multi-locational 

teams in high-variety CBSAs increased well beyond that of the other types of patents. Thus, Figure 5 

shows that the increasing concentration of breakthrough innovation in knowledge-diverse cities 

documented in Figure 3 was driven by inventors that collaborated with non-local teammates. Moreover, 

breakthrough innovation at the end of the 20th century was most common in large innovative clusters 

connected to other distant large innovative clusters.  

 

5) Empirical Assessment of the Theoretical Model  

 

How are the changes in the geography of breakthrough invention documented in Section 4 related to 

changes in inventors’ institutional and communication technology environments? In this section, I 

review evidence from patent records to understand how the state of the disruptiveness of the regime of 

technological change, the knowledge intensity of breakthroughs, and the distance-based frictions 

incurred by collaborative and learning technologies changed over the study period. 

 

I begin by analyzing the disruptiveness of the regime of technological change. I assess the 

disruptiveness of the technological change regime that prevailed during historical time periods by 

comparing the average impact of novel patents relative to that of normal patents. As in the prior 

analyses, I control for changes in the impact of patents across decades and across patents with different 

numbers of subclasses, and for patents in different industries and invented in different CBSAs. In Figure 

6, I plot the adjusted impact of patents by novelty and knowledge intensity. In Figure 6A, I adjust for 
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the year and number of subclasses on a patent, as described by Equation 4, to conduct this adjustment. 

In Figure 6B, I additionally adjust for the primary class and the CBSA of a patent, as described by 

Equation 5. For brevity, I plot raw patent impact values, broken out by patents’ novelty and knowledge 

intensity, in Appendix B. 

 

Figure 6: Patent Impact by Novelty 

(A) Impact adjusted for Year*NRSubclasses 
 

 

(B) Impact adjusted for Year*NRSubclasses, 
Year*PrimaryClass, and Year*CBSA 

 
Note: Patent impact is adjusted using Equations 4 and 5 

 

Figure 6 shows that novel patents were more impactful than normal patents at the start and end of the 

20th century, but were no more impactful than normal patents during the middle of the 20th century. The 

95% confidence intervals around the mean values are narrow, indicating that the differences at the start 

and end of the 20th century were statistically significant. These patterns are found in both Figures 6A 

and 6B, indicating that the patterns are not driven by industry or city-specific factors. These results 

suggest that breakthrough inventions came in two waves during the 20th century. The first wave, which 

subsided during the 1920s, coincides with the second industrial revolution (Gordon, 2017). The second 

wave, which began in the 1970s, coincides with the IT revolution (Kemeny and Storper, 2020) 

 

Next, I study the evolution of the knowledge intensity of breakthrough innovation, which I define as 

the additional knowledge sources for helping inventors to create high-impact novelty. To perform this 

analysis, I test whether the average impact of patents that draw knowledge from a larger number  of 

knowledge-based parents increased relative to average impact of patents that draw knowledge from 

fewer knowledge-based parents. To measure the number of prior knowledge sources that each patent 

draws ideas from, I compute the in-degree of patents using the graph of knowledge flows described in 

Section 2. This measure of knowledge intensity is the same as the “tree size” measure used by Jones 
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(2009), except that Jones (2009) uses citations to identify patent’s knowledge-based parents while I use 

the graph of knowledge flows produced by tracing patent subclasses between patents. 

 

To simplify the analysis, I transform the number of knowledge sources used to make each patent into a 

binary variable by defining patents with “many knowledge-based parents” as the patents in the top 

decile of their grant year cohort in terms of the number of prior patents they draw knowledge from. I 

define patents as having “few knowledge-based parents” if they fall in the bottom 90% of their grant 

year cohort. As before, I use the regressions described by Equations 4 and 5 to make these adjustments. 

I plot adjusted patent impact by patent novelty and knowledge intensity in Figures 7A and 7B. Raw 

patent impact values, broken out by patent novelty, are shown in Appendix B. 

 

Figure 7: Patent Impact by Novelty and Number of Patent Parents 

(A) Impact adjusted by Year*NRSubclasses 
 

 

(B) Impact adjusted for Year*NRSubclasses, 
Year*PrimaryClass, and Year*CBSA 

 
Note: Patent impact is adjusted using Equations 4 and 5 

 

Figure 7A shows that the adjusted impact of novel patents with many knowledge-based parents patents 

was greater than that of novel patents with few knowledge-based parents during the full study period. 

This difference in impact increased significantly starting in 1965. The 95% confidence interval is very 

narrow, indicating that the rise in the adjusted impact of patents with many parent patents at the end of 

the 20th century was statistically significant. These relationships are also found in Figure 7B, indicating 

that city-specific and industry-specific factors do not explain the difference in impact and the trend. 

Therefore, I conclude that knowledge intensity of breakthroughs was moderate until 1965 but very high 

after 1965.  

 

Next, I investigate changes in the strength of long-distance communication technologies. As discussed 

earlier, long-distance communication technologies can be categorized into two groups: long-distance 
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collaboration technologies, and long-distance knowledge-sourcing technologies. I measure the strength 

of each type of long-distance communication technology by the revealed ability for inventors to create 

high-impact novelty while collaborating with distant teammates or while sourcing knowledge from non-

local CBSAs. Figure 5 in Section 5 presented suggestive evidence that long-distance collaborative 

technology was weak before 1950 but grew stronger thereafter. In particular, the average impact of 

novel patents invented by multi-locational teams in knowledge diverse cities climbed significantly 

above that of novel patents invented by single-location teams in the second half of the 20th century.  

 

Finally, to assess the strength of long-distance knowledge-sourcing technologies, I test whether novel 

patents created by inventors who source knowledge locally are more impactful than novel patents 

created by inventors who source knowledge non-locally. I define a focal patent as one that sources 

knowledge locally if an above-average share of its parent patents were developed in CBSAs in which 

the inventors of the focal patent reside.6 As in the previous analyses, I account for changes in the average 

impact of patents across time and across patents assigned a different number of subclasses by regressing 

the impact of patents against a Year*NrSubclasses factor variable as described by Equation 4. I plot the 

adjusted values, aggregated by patent novelty and the localness of its knowledge sources in Figure 8A. 

I adjust for the industry of a patent and the CBSAs of its co-inventors using Equation 5 and plot those 

values in Figure 8B. In Appendix B, I present similar results using unadjusted patent impact values. 

 

Figure 8: Patent Impact by Novelty and Local Knowledge Sourcing 

(A) Impact adjusted for Year*NRSubclasses 
 
 

 

(B) Impact adjusted for Year*NRSubclasses, 
Year*PrimaryClass, and Year*CBSA 

 

 
Note: Patent impact is adjusted using Equations 4 and 5 

 
6 I re-compute the average number of local knowledge sources on patents each year, so in any given year half of 
all granted patents are defined as patents that source knowledge with proximity. 
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Figure 8A indicates that novel patents using knowledge sourced with proximity were more impactful 

than novel patents using knowledge sourced without proximity during the full study period. Moreover, 

the green line is always significantly above the orange line, as indicated by their non-overlapping 95% 

intervals. Figure 8B shows that this relationship is robust to the inclusion of industry and CBSA fixed 

effects, although the adjusted impact of novel patents from non-local sources does trend upward toward 

the end of the 20th century in the latter figure. This increase at the end of the 20th century suggests that 

long-distance knowledge-sourcing technologies improved between 1965 and 1999, but fell short of 

becoming perfect substitutes for face-to-face communication. When viewed alongside Figure 5’s 

finding that breakthroughs were disproportionately produced by multi-locational teams toward the end 

of the 20th century, Figure 7 suggests that multi-locational teams have emerged in part as a response to 

the difficulty for inventors to source knowledge from regions where they do not have collaborators. 

 

To conclude the analysis, in Table 3 I summarize the observed state of the disruptiveness of the regime 

of technological change, the knowledge-intensity of breakthrough innovation, the state of collaborative 

technologies, and the state of knowledge-sourcing technologies to generate the predicted geographies 

of breakthrough innovation for the early, mid, and late 20th century. 

 

Table 3: Observed States of Factors of the Model and the Predicted Geography of 

Breakthrough Inventions 

 Time Period 

Factor 1900-1930 1930-1970 1970-1999 

Disruptiveness of regime of 
technological change High Low High 

Knowledge intensity of breakthroughs Moderate Moderate High 

Effectiveness of long-distance 
collaboration technology Weak Weak Strong 

Effectiveness of long-distance 
knowledge-sourcing technology Weak Weak Moderate 

Predicted geography of breakthrough 
invention 

Weakly 
concentrated Undefined Multi-Nuclei 

 

The predicted geographies of breakthrough innovation from Table 3 can be compared to the observed 

geographies documented in Figures 3 and Figure 5 to test the accuracy of the model. Notably, the states 

of breakthrough innovation predicted in Table 3 closely correspond to the empirical distributions found 
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in Figures 3 and 5. During the first part of the 20th century, the weak long-distance collaboration and 

knowledge-sourcing technologies, the high level of technological disruptiveness, and moderate 

knowledge intensity of breakthroughs predict a weakly concentrated geography of breakthroughs. 

Figure 3 bears out this prediction by showing that the adjusted impact of novel patents was slightly 

higher for patents invented in knowledge-diverse cities than for patents invented in knowledge-

homogeneous cities. During the mid-20th century (approximately 1930-1970), long-distance 

collaboration and knowledge-sourcing technologies were weak and the knowledge intensity of 

breakthroughs was moderate. While these factors ceteris paribus would predict a spatially-concentrated 

geography of breakthrough innovation, the disruptiveness of the regime of technological change was 

low. Because the disruptiveness of the regime of technological change was low, the geography of 

breakthrough innovation was undefined. This proposition is confirmed in Figure 3 where the average 

impact of novel patents is shown to be no higher than the average impact of normal patents, regardless 

of the local knowledge diversity in which the novel patents are invented. Finally, at the end of the 20th 

century, the combination of a high knowledge intensity of breakthroughs, strong long-distance 

collaboration technology, weak long-distance knowledge-sourcing technology, and a high 

disruptiveness of technological change predicts a multi-nuclei geography of breakthrough innovation. 

The geography predicted by these parameters corresponds to the observed distribution described by 

Figure 5, where high-impact novelty was shown to be produced by multi-location teams with co-

inventors residing in multiple knowledge-diverse cities. 

 

6. Discussion 

 

Breakthrough invention is not an inherent outcome of agglomeration, but rather organizes in 

concentrated, dispersed, or multi-nuclei spatial arrangements because of broader changes to inventors’ 

institutional and communication-technology environments. These factors influence whether 

technological change is driven by normal or novel inventions, the quantity of knowledge sources that 

inventors need to create novel and impactful inventions, and the frictions involved in sourcing 

knowledge and sustaining collaborations across distance.  

 

The two goals of this paper were to document changes in the spatial distribution of breakthrough 

invention in the United States evolved over the 20th century and to propose an interpretation for why 

those changes occurred. To this end, the paper began by describing how the advantages of local 

knowledge variety and multi-locational collaboration changed over time. Thereafter, a theory was 

developed in which breakthroughs are generated in different technological regimes and with different 

distance-based frictions for communication. Finally, the paper showed how the geographical 

distribution of breakthrough invention predicted by the theory closely aligned with the observed 

distributions in the United States over the 20th century. 
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In addition to the geography of breakthrough invention, explicit recognition of the institutional factors 

and communication technologies that shape the process of invention can inform our understanding of 

how and why the geography of economic activity evolves over time. One example is the mid-20th 

century, which is broadly understood to be an era during which economic activities in the U.S. spread 

out across space (Rosen, 1979; Roback, 1982; Glaeser and Tobio, 2008; Glaeser, 2008). According to 

these classical sources, the spreading out of economic activities in the middle of the 20th century was 

caused by a decline in transportation costs. While a decline in transportation costs may have helped to 

facilitate geographic dispersal, the results from this study suggest that an additional factor, a reduction 

in the disruptiveness of the regime of technological change, was also important. As documented in 

Figure 6, fewer breakthroughs were invented during the mid-20th century. This reduction in the 

disruptiveness may have suppressed firms’ demand for location in dense agglomerations, because the 

advantages of agglomeration are larger for firms that compete in environments riddled by uncertainty 

and rapid change (Duranton and Puga, 2001; Lin, 2012; Frank, et al. 2018; Kemeny and Storper, 2020).  

 

This historical insight may prove helpful for predicting future changes to the geography of breakthrough 

innovation. The COVID-19 pandemic has shifted many high-skilled jobs to remote work (Dingel and 

Neiman, 2020). Recent advancements in communication technologies are generally thought to have 

reduced the costs associated with sharing knowledge across space (Catalini et al., 2018; Dong et al., 

2018; Agrawal et al., 2017; Clancy, 2020). Thus, there is now widespread interests in the possibility 

that inventive activities will remain dispersed in the future. The findings of this study indicate that there 

is no historical precedent from the 20th century in which breakthrough invention was carried out in 

geographically-dispersed environments. The only time period that breakthrough invention was not 

concentrated in large CBSAs was during the mid-20th century, because fewer breakthroughs were 

invented altogether during that period. While it is theoretically possible that long-distance 

communication technologies will eventually become perfect substitutes for face-to-face 

communication, such extrapolations step outside the historical record.  

  

Besides communication costs, this study emphasizes that the level of technological disruption is an 

important driver of the spatial concentration of breakthrough invention. Therefore, predictions of the 

post-COVID-19 geography of breakthroughs should pay careful attention to a possible decline in 

technological disruption. Notably, market concentration in firms in the United States has reached its 

highest level since the 1970s (Autor et al., 2017; Grullon et al., 2019). The ongoing increase in market 

concentration may either cause, or be a result of, a slowdown in technological disruption as the 

technologies and routines of incumbent firms are less frequently displaced by new product or process 

technologies. If technological change is increasingly advanced through incremental inventions, then 

technological uncertainty may also decline. As a result, economic activity could disperse across space 
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not because of a reduction in communication costs, but because of the reduction in technological 

disruption. 

 

To conclude, this paper generates three core insights for interpreting and forecasting the geography of 

breakthrough innovation. First, the geography of breakthrough innovation changes over time as social, 

economic, and technological conditions evolve. Second, by identifying changes to the broader social, 

economic and technological conditions of inventors and by modeling their interrelationships, research 

can inform and improve predictions for past and future distributions of the geography of breakthrough 

innovation. Third, breakthrough innovation in the post-COVID-19 era is likely to involve high 

knowledge intensity, powerful collaborative technologies, high market concentration, and a possible 

reduction in the disruptiveness of the regime of technological change. Careful measurement and 

modeling of these four factors is needed for researchers and policy makers to understand and rectify the 

new geographical and technological challenges that are bound to emerge. 
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Appendix A: Multi-Locational Collaboration Types 

 

The following figure examines the average impact of novel and normal patents that are created 

through non-local collaborations based on the knowledge diversity of their respective cities. For 

simplicity, I restrict the data to collaborative teams located in two metropolitan areas. This generates 3 

types of collaborative possibilities: collaborations between inventors located in two knowledge-

diverse cities (Div-Div), collaborations between inventors located in one diverse and one 

homogeneous city (Mixed), and collaborations between inventors located in two homogenous cities 

(Homog-Homog). To compute the residual impact of inventions, I collect residuals from the following 

regression model and display them in Figure A: 

 

𝐼𝑚𝑝𝑎𝑐𝑡- = 𝑌𝑒𝑎𝑟- ∗ 𝑁𝑟𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠- + 𝐸- 

 

Figure A: Adjusted Impact of Multi-Locational Patents by Collaboration Type, 
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Appendix B: Analysis of Model Parameters using Unadjusted Patent Impact 

 

The following figures replicate the analysis in Section 4 but use unadjusted patent impact. 

 

Figure B1: Raw Patent Impact by Novelty 

 
 

 

Figure B2: Raw Patent Impact by Novelty and Number of Patent Parents 
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Figure B3: Raw Patent Impact by Novelty and Proximity of Knowledge Sources 
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Appendix C: Analysis using 5% Threshold for High-Variety CBSAs 

 

This analysis looks at the impact of patents produced in high-variety CBSAs, using a 5% cutoff value 

to define high knowledge variety. The plotted values are adjusted for the number of subclasses on 

patents and the year the patents are granted, using the following regression model: 

 

𝐼𝐻𝑆(𝐼𝑚𝑝𝑎𝑐𝑡)- = 𝑌𝑒𝑎𝑟- ∗ 𝑁𝑟𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠- + 𝐸- 

 

Figure C: Impact by Local Knowledge Variety using 5% Threshold 

(1) Adjusted Impact by Type and Local 
Knowledge Variety 

 

(2) Adjusted Impact by Type, Local Knowledge 
Variety, and Collaboration Proximity 
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Appendix D: The Geography of Single-Subclass and 9+ Subclass Patenting 

 

In this appendix, I test whether patents with one subclass or 9+ subclass are more likely to be invented 

in CBSAs with high knowledge variety or by multilocational teams. I perform this analysis because 

patents with 1 subclass and patents with 9+ subclasses were omitted from the main analysis due to 

data construction limitations discussed in Section 2. In addition, it is plausible that patents with 1 

subclass are less novel and lower-impact than other patents, and that patents with 9+ subclasses are 

more novel and higher-impact than other patents. 

 

To identify the geography of the invention of single-subclass and 9+ subclass invention, I administer 

two regression models. The first model is given by equation D1: 

 

D1) 𝐻𝑖𝑔ℎ𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝐶𝐵𝑆𝐴- = 𝐵/ + 𝐵,𝑂𝑛𝑒𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠- + 𝐵+𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛8𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠- + 𝐸- 

 

In the model, 𝐻𝑖𝑔ℎ𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝐶𝐵𝑆𝐴- is a binary variable that equals 1 if the CBSA in which the 

inventor i of patent p is located is above the 10% knowledge variety threshold, as described in Section 

3, 𝑂𝑛𝑒𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠- is a dummy variable that equals 1 if a patent has a single subclass, and  

𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛8𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠- if a patent has more than 8 subclasses. The model intercept, 𝐵/, 

represents the probability that an inventor that co-invents a patent with 2-8 subclasses is in a high-

variety CBSA. I estimate the model using a logistic regression. 

 

The second model I administer tests for a correlation between the number of subclasses on a patent 

and its propensity to be invented by a multilocational team of co-inventors. The regression model is 

given by equation D2: 

 

D2) 𝑀𝑢𝑙𝑡𝑖𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙- = 𝐵/ + 𝐵,𝑂𝑛𝑒𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠- + 𝐵+𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛8𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠- + 𝐸- 

 

In the model, 𝑀𝑢𝑙𝑡𝑖𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙- is a dummy variable that equals 1 if the co-inventors of patent p 

reside in more than one CBSA. The model otherwise resembles Equation D1. As with Equation D1, I 

estimate D2 using a logit model. 

 

In addition to the regressions represented by equations D1 and D2, I also estimate these models with 

the inclusion of year fixed effects. These yearly fixed effects are particularly important for the 

estimation of the model of multilocational teams, because the propensity for inventors to collaborate 

in multilocational teams and the average number of subclasses on patents both increased over time. 

Results for the regressions are presented in Table D. 
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Table D: Regression Results for the Geography of Single-Subclass and 9+ Subclass Patenting 

 Dependent Variable: 
𝐻𝑖𝑔ℎ𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝐶𝐵𝑆𝐴- 

Dependent Variable: 
𝑀𝑢𝑙𝑡𝑖𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙- 

Intercept 0.336*** 
(0.000710)  -1.64*** 

(0.000949)  

Single subclass -0.04888*** 
(0.00191) 

-0.0559*** 
(0.00196) 

-0.391*** 
(0.00290) 

-0.0630*** 
(0.00310) 

Greater than 8 
subclasses 

0.152*** 
(0.00410) 

0.165*** 
(0.00413) 

0.181*** 
(0.00511) 

0.177*** 
(0.177) 

Yearly fixed 
effects  Yes  Yes 

Note: 9,720,476 observations in each regression model 

 

The results in Table D show that single subclass patents are less likely to be invented by inventors in 

CBSAs with high local knowledge variety and by multilocational inventor teams. On the other hand, 

patents with greater than 8 subclasses are more likely to be invented in high-variety CBSAs and by 

multi-locational teams. Because patent impact and novelty increase with the number of subclasses on 

patents, the results in Table D suggest that the omission of patents with one subclass and more than 8 

subclasses in the main analysis may understate the extent to which breakthroughs are invented in 

high-variety CBSAs and by multilocational teams of inventors.  

 

 

 

 


